Is chatgpt has the ability to parse a file?
I mean by that I can tell him what to do and he read the file and do it.
Why do you need to include all job postings in the same context?
I did something like that with davinci back in the day, here’s the approximate workflow:
- tear the CV apart to determine capabilities (c)
- for each job posting, slice it into requirements (r)
- use either embeddings or the model to set up the matrix M = f(c, r) = c_i ~~ c_j
- gather \mathbf{v} = \displaystyle \bigvee_{j} M_{ij}, (it’s just \mathbf{v} = [r_i \in \mathbf{c}]), get the sum of that, and normalize it by |\mathbf{r}|. That’s your acceptance likelihood score. Transpose M for your personal skill match score. Take your top 30 of your favorite and bob’s your uncle. You can use some TF-IDF or something to merge them if you like. But I didn’t explore that too much, I just took the acceptance likelihood.
I found some prompt code for nr 2, surprisingly
import { Configuration, OpenAIApi } from 'openai';
import { defineSecret } from 'firebase-functions/v2/params'
//import { OpenAIApiAxiosParamCreator } from 'openai/dist/api';
//import axios from 'axios';
const postamblev4 = `
## Given the information above, fill the following JSON object. It's ok to have empty arrays. For key concepts, if there is a mention of 'something similar', include a word that describes all concepts that are meant. Don't include whitespaces in JSON output.
{
"Job Title": string,
"Company": string,
"Job Post Date": string,
"Pay Range": string,
"Location": string ,
"Remote Job": "yes" | "no" | "unknown",
"Job Responsibilities": {"description": string, "key concepts": string[]}[],
"Required Experience": {"description": string, "key concepts": string[], "years"?: number}[],
"Preferred Experience": {"description": string, "key concepts": string[], "years"?: number}[],
"Required Education": {"description": string, "key concepts": string[]}[],
"Preferred Education": {"description": string, "key concepts": string[]}[],
"Required Certifications": {"description": string, "key concepts": string[]}[],
"Preferred Certifications": {"description": string, "key concepts": string[]}[]
}
`;
type Postamblev4 = {
"Job Title": string,
"Company": string,
"Job Post Date": string,
"Pay Range": string,
"Location": string ,
"Remote Job": "yes" | "no" | "unknown",
"Job Responsibilities": {"description": string, "key concepts": string[]}[],
"Required Experience": {"description": string, "key concepts": string[], "years"?: number}[],
"Preferred Experience": {"description": string, "key concepts": string[], "years"?: number}[],
"Required Education": {"description": string, "key concepts": string[]}[],
"Preferred Education": {"description": string, "key concepts": string[]}[],
"Required Certifications": {"description": string, "key concepts": string[]}[],
"Preferred Certifications": {"description": string, "key concepts": string[]}[]
}
const OPENAI_PARSEJOBDESCRIPTION_API_KEY = defineSecret('OPENAI_PARSEJOBDESCRIPTION_API_KEY');
export const parseJobDescription1 = async (jobDescription: string, status: (update: string)=>void = ()=>{}): Promise<object> => {
let cost = 0;
// if failed to load api key, return empty object
if(!OPENAI_PARSEJOBDESCRIPTION_API_KEY.value()){
return {cost: 1, error: "failed to load api key"};
}
const configuration = new Configuration({apiKey: OPENAI_PARSEJOBDESCRIPTION_API_KEY.value()});
const openai = new OpenAIApi(configuration);
status("parsing responsibilities");
const responsibilities = await openai.createCompletion({
model: "text-davinci-003",
prompt: "# This is a web scrape of job description\n\n" + jobDescription + "\n\n\n# In an itemized list, what are the job responsibilities? write them in past tense\n\n",
temperature: 0.7,
max_tokens: 1024,
top_p: 1,
frequency_penalty: 0,
presence_penalty: 0,
});
status("finished parsing responsibilities");
cost += responsibilities.data.usage?.total_tokens || 4000;
return {
responsibilities: responsibilities.data,
cost: cost,
};
}
export const parseJobDescription2 = async (jobDescription: string, status: (update: string)=>void = ()=>{}): Promise<{
cost: number,
error?: string,
parsedData?: Postamblev4,
data?: object,
model?: string
}> => {
let cost = 0;
// if failed to load api key, return empty object
if(!OPENAI_PARSEJOBDESCRIPTION_API_KEY.value()){
return {cost: 1, error: "failed to load api key"};
}
const configuration = new Configuration({apiKey: OPENAI_PARSEJOBDESCRIPTION_API_KEY.value()});
const openai = new OpenAIApi(configuration);
status("parsing job description 2");
const preamble = `## This is a web scrape of job description
`;
const cleaner = (text: string) : string => {
// remove all #'s if they're the first non whitespace characters on a line
text = text.replace(/^(\s*)#*/gm, "$1");
// remove all ##'s if they follow 5 or more spaces
text = text.replace(/(\s{2,})##*/gm, "$1--");
return text;
}
// const postamblev1 = `
//
// ## Given the information above, fill the following JSON object. It's ok to have empty arrays. For keywords, if there is a mention of "something similar", include a word that describes all concepts that are meant.
// {
// "Job Title": string,
// "Company": string,
// "Job Post Date": string,
// "Pay Range": string,
// "Location": string ,
// "Remote Job": "yes" | "no" | "unknown",
// "Job Responsibilities": {"description": string, "keywords": string[]}[],
// "Required Experience": {"description": string, "keywords": string[], "years"?: number}[], // don't include years in description
// "Preferred Experience": {"description": string, "keywords": string[], "years"?: number}[], // don't include years in description
// "Required Education": {"description": string, "keywords": string[]}[],
// "Preferred Education": {"description": string, "keywords": string[]}[],
// "Required Certifications": {"description": string, "keywords": string[]}[],
// "Preferred Certifications": {"description": string, "keywords": string[]}[]
// }
//
// `;
// @ts-ignore
const postamblev2 = `
## Given the information above, fill the following JSON object. It's ok to have empty arrays. For keywords, if there is a mention of "something similar", include a word that describes all concepts that are meant. Don't include whitespaces in JSON output.
{
"Job Title": string,
"Company": string,
"Job Post Date": string,
"Pay Range": string,
"Location": string ,
"Remote Job": "yes" | "no" | "unknown",
"Job Responsibilities": {"description": string, "keywords": string[]}[],
"Required Experience": {"description": string, "keywords": string[], "years"?: number}[],
"Preferred Experience": {"description": string, "keywords": string[], "years"?: number}[],
"Required Education": {"description": string, "keywords": string[]}[],
"Preferred Education": {"description": string, "keywords": string[]}[],
"Required Certifications": {"description": string, "keywords": string[]}[],
"Preferred Certifications": {"description": string, "keywords": string[]}[]
}
`;
// underscores dramatically increase the token count in output
// @ts-ignore
const postamblev3 = `
## Given the information above, fill the following JSON object. It's ok to have empty arrays. For keywords, if there is a mention of "something similar", include a word that describes all concepts that are meant. Don't include whitespaces in JSON output.
{
"Job_Title": string,
"Company": string,
"Job_Post Date": string,
"Pay_Range": string,
"Location": string ,
"Remote_Job": "yes" | "no" | "unknown",
"Job_Responsibilities": {"description": string, "key_concepts": string[]}[],
"Required_Experience": {"description": string, "key_concepts": string[], "years"?: number}[],
"Preferred_Experience": {"description": string, "key_concepts": string[], "years"?: number}[],
"Required_Education": {"description": string, "key_concepts": string[]}[],
"Preferred_Education": {"description": string, "key_concepts": string[]}[],
"Required_Certifications": {"description": string, "key_concepts": string[]}[],
"Preferred_Certifications": {"description": string, "key_concepts": string[]}[]
}
`;
const response = await openai.createCompletion({
model: "text-davinci-003",
prompt: preamble + cleaner(jobDescription) + postamblev4,
temperature: 0.7,
max_tokens: 2000,
top_p: 1,
frequency_penalty: 0,
presence_penalty: 0,
});
status("finished parsing jobdescription 2.4");
cost += response.data.usage?.total_tokens || 4000;
// parse the data for downstream ops
let parsedData: Postamblev4;
try{
// @ts-ignore
parsedData = JSON.parse(response.data.choices[0].text);
}catch(e){
console.warn("failed to re-parse job description 2.4", e, response.data.choices[0].text);
return {cost: 1, error: "failed to parse output", data: response.data};
}
return {
parsedData: parsedData,
data: response.data,
cost: cost,
model: "parseJobDescription2.4"
};
}
export const pastTense1 = async (phraseList: string[], status: (update: string)=>void = ()=>{}): Promise<{phrases: string[], data?: object, cost: number, error?: string, model?: string}> => {
let cost = 0;
// if failed to load api key, return empty object
if(!OPENAI_PARSEJOBDESCRIPTION_API_KEY.value()){
return {cost: 1, error: "failed to load api key", phrases: []};
}
const configuration = new Configuration({apiKey: OPENAI_PARSEJOBDESCRIPTION_API_KEY.value()});
const openai = new OpenAIApi(configuration);
status("past tense 1");
const preamble = `## Here's a list of strings found in a job description.
`;
const cleaner = (text: string) : string => {
// remove all #'s if they're the first non whitespace characters on a line
text = text.replace(/^(\s*)#*/gm, "$1");
// remove all ##'s if they follow 5 or more spaces
text = text.replace(/(\s{2,})##*/gm, "$1--");
return text;
}
const pasttensifyPostamblev1 = `
## Rewrite them as past tense sentences, so it appears that something was done as part of a job. example: "2+ years experience with Big Data, Cloud Native Platforms" => "Worked with Big Data and Cloud Native Platforms"
["`
const response = await openai.createCompletion({
model: "text-davinci-003",
prompt: preamble + cleaner(JSON.stringify(phraseList)) + pasttensifyPostamblev1,
temperature: 0.7,
max_tokens: 2000,
top_p: 1,
frequency_penalty: 0,
presence_penalty: 0,
});
status("finished past tense 1");
cost += response.data.usage?.total_tokens || 4000;
// parse the data for downstream ops
let parsedData: string[];
try{
// @ts-ignore
parsedData = JSON.parse('["'+response.data.choices[0].text);
}catch(e){
console.warn("failed to re-parse job description 2.4", e, response.data.choices[0].text);
return {cost: 1, error: "failed to parse output", data: response.data, phrases: []};
}
return {
phrases: parsedData,
data: response.data,
cost: cost,
model: "pasttensify1"
};
}
HTH, gl!
1 Like