Papers by Mangalathu Rajeevan
Proceedings of the National Academy of Sciences of the United States of America, May 15, 1993
Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bear... more Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bearing on the regulation of flower formation
Journal of Histochemistry and Cytochemistry, Mar 1, 1999
We have optimized conditions for the chemiluminescent analysis of gene expression using high-dens... more We have optimized conditions for the chemiluminescent analysis of gene expression using high-density filter arrays (HDFAs). High sensitivity and specificity were achieved by optimizing cDNA probe synthesis, hybridization, and detection parameters. The chemiluminescent expression profile reflected expected differences in the transcripts isolated from different sources (placenta and keratinocytes). We estimated the detection limit for low-abundance message to be 1-15 transcripts per cell, a sensitivity rivaling that reported for microarray formats and exceeding that reported for autoradiographic HDFAs. The method allows for short exposure times and reuse of probe. It should be equally applicable to techniques such as differential screening of cDNA libraries and differential display PCR.
Pharmaceuticals, Sep 9, 2022
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Viruses, Jan 27, 2021
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY

Journal of Virological Methods, Sep 1, 2006
Polymorphisms in human papillomavirus type 16 (HPV16) result in variants from the prototype seque... more Polymorphisms in human papillomavirus type 16 (HPV16) result in variants from the prototype sequence which can be designated according to geographic distribution and are broadly classified as European (E), African (Af), Asian (As), or Asian-American (AA). Detection of variants has been used to distinguish persistent HPV16 infection from re-infection in natural history studies, and variants have been associated with an increased risk of cervical disease in some populations. Variant determination usually relies on conventional Sanger sequencing of regions of the viral genome, with the major variant group assignments requiring the sequencing of only seven polymorphic sites spread over a 242-bp region of the E6 gene. We applied pyrosequencing to facilitate rapid sequencing and enable the simultaneous detection of multiple variants. A single-stranded template for pyrosequencing was prepared by amplifying a 314-bp fragment (nt 75-388) with a biotin at the 5-end of the reverse primer to facilitate strand separation and purification. Polymorphisms at the nucleotide sites 109, 131, 132, 143, 145, 178 and 350 were determined in three separate sequencing reactions, one of which was a multiplex format. Pyrosequencing of 97 HPV16-positive exfoliated cervical samples confirmed the Sanger sequencing results; however pyrosequencing identified additional variants in several samples containing mixed variants.
The Journal of Molecular Diagnostics, Feb 1, 2006
Analytical Biochemistry, Jul 1, 2002
Pharmacogenomics, Mar 1, 2006

Psychoneuroendocrinology, May 1, 2009
Allostatic load (AL) is a theoretical framework that describes the cumulative physiologic effects... more Allostatic load (AL) is a theoretical framework that describes the cumulative physiologic effects of adaptation to change or stress throughout the lifespan. AL is operationalized by a composite index of multiple biomarkers. Accordingly, genes, behavior and environment contribute to AL. To determine if individual differences in AL may be influenced by inherent genetic variation, we calculated an allostatic load index (ALI) for 182 Caucasian subjects derived from a population-based study of chronic fatigue syndrome. Nearly 65% of the subjects in this study sample reported fatiguing illness. ALI was calculated based on 11 measures representing metabolic, cardiovascular, inflammatory, hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS) activities. Subjects were dichotomized into high (ALI > or = 3) or low (ALI < 3) AL groups, and the association between high AL and 129 polymorphisms in 32 genes related to the HPA axis, neurotransmission, inflammation, cardiovascular and metabolic functions were evaluated. Polymorphisms in angiotensin-1 converting enzyme (ACE), corticotropin-releasing hormone receptor 1 (CRHR1), and serotonin receptors (HTR3A and HTR4) were associated with AL (p=0.0007-0.0486), but only one polymorphism, rs4968591, in ACE remained significant after correction for multiple comparisons. The T allele of ACE rs4968591 was more common in subjects with high AL (67.5%) than in subjects with low AL (49.3%) (p=0.0007), and this effect appeared independent of age, sex, body mass index and fatigue status. Additionally, high interleukin-6 (IL-6; p(trend)=0.04), and C-reactive protein (CRP; p(trend)=0.01) levels, as well as low urinary cortisol levels in females (p=0.03) were associated with the T allele, which may result in allele-specific binding of the transcription factor, E2F1. Our results suggest a role for ACE in the bidirectional communication between the central nervous and immune systems in response to stress. Further studies will be needed (a) to replicate the association between AL and ACE polymorphisms in population studies designed to differentiate the effects of sex, age and racial/ethnic background, (b) to evaluate the effect of allele-specific binding of E2F1 at rs4968591, and (c) to examine the role of ACE in the co-regulation of CRP, IL-6 and cortisol.

Journal of Molecular Medicine, Oct 14, 2004
We used differential-display PCR of peripheral blood mononuclear cells (PBMCs) to search for cand... more We used differential-display PCR of peripheral blood mononuclear cells (PBMCs) to search for candidate biomarkers for chronic fatigue syndrome (CFS). PBMCs were collected from a subject with CFS and an ageand sex-matched control before and 24 h after exercise. RNA expression profiles were generated using 46 primer combinations, and the similarity between the individuals was striking. Differentially expressed bands were excised, reamplified, and sequenced, yielding 95 nonredundant sequences, of which 50 matched to known gene transcripts, 38 matched to genes with unknown functions, and 7 had no similarity to any database entry. Most (86%) of the differences between the two subjects were present at baseline. Differential expression of ten genes was verified by real-time reverse-transcription PCR: five (cystatin F, MHC class II, platelet factor 4, fetal brain expressed sequence tag, and perforin) were downregulated, and the remaining five genes (cathepsin B, DNA polymerase 4, novel EST PBMC191MSt, heparanase precursor, and ORF2/L1 element) were upregulated in the subject with CFS. Many of these genes have known functions in defense and immunity, thus supporting prior suggestions of immune dysregulation in the pathogenesis of CFS. Differential-display PCR is a powerful tool for identification of candidate biomarkers. Investigation of these markers in samples from well-designed epidemiological studies of CFS will be required to determine the validity of these candidate biomarkers. The real-time reverse-transcription PCR assays that we developed for assay of these biomarkers will facilitate high-throughput testing of these additional samples.

Disease Markers, 2002
Chronic fatigue syndrome (CFS) is a debilitating illness lacking consistent anatomic lesions and ... more Chronic fatigue syndrome (CFS) is a debilitating illness lacking consistent anatomic lesions and eluding conventional laboratory diagnosis. Demonstration of the utility of the blood for gene expression profiling and biomarker discovery would have implications into the pathophysiology of CFS. The objective of this study was to determine if gene expression profiles of peripheral blood mononuclear cells (PMBCs) could distinguish between subjects with CFS and healthy controls. Total RNA from PBMCs of five CFS cases and seventeen controls was labeled and hybridized to 1764 genes on filter arrays. Gene intensity values were analyzed by various classification algorithms and nonparametric statistical methods. The classification algorithms grouped the majority of the CFS cases together, and distinguished them from the healthy controls. Eight genes were differentially expressed in both an age-matched case-control analysis and when comparing all CFS cases to all controls. Several of the diffrentially expressed genes are associated with immunologic functions (e.g., CMRF35 antigen, IL-8, HD protein) and implicate immune dysfunction in the pathophysiology of CFS. These results successfully demonstrate the utility of the blood for gene expression profiling to distinguish subjects with CFS from healthy controls and for identifying genes that could serve as CFS biomarkers.

BMC Systems Biology, Nov 6, 2008
Background: Systems biologic approaches such as Weighted Gene Co-expression Network Analysis (WGC... more Background: Systems biologic approaches such as Weighted Gene Co-expression Network Analysis (WGCNA) can effectively integrate gene expression and trait data to identify pathways and candidate biomarkers. Here we show that the additional inclusion of genetic marker data allows one to characterize network relationships as causal or reactive in a chronic fatigue syndrome (CFS) data set. Results: We combine WGCNA with genetic marker data to identify a disease-related pathway and its causal drivers, an analysis which we refer to as "Integrated WGCNA" or IWGCNA. Specifically, we present the following IWGCNA approach: 1) construct a co-expression network, 2) identify trait-related modules within the network, 3) use a trait-related genetic marker to prioritize genes within the module, 4) apply an integrated gene screening strategy to identify candidate genes and 5) carry out causality testing to verify and/or prioritize results. By applying this strategy to a CFS data set consisting of microarray, SNP and clinical trait data, we identify a module of 299 highly correlated genes that is associated with CFS severity. Our integrated gene screening strategy results in 20 candidate genes. We show that our approach yields biologically interesting genes that function in the same pathway and are causal drivers for their parent module. We use a separate data set to replicate findings and use Ingenuity Pathways Analysis software to functionally annotate the candidate gene pathways. Conclusion: We show how WGCNA can be combined with genetic marker data to identify disease-related pathways and the causal drivers within them. The systems genetics approach described here can easily be used to generate testable genetic hypotheses in other complex disease studies.
Acta horticulturae, Jun 1, 1983
The Journal of Molecular Diagnostics, Aug 1, 2000

Journal of Molecular Neuroscience, Jan 6, 2010
Glucocorticoid receptor (GR) and serotonin (5-hydroxytryptamine (5-HT)) signaling systems play a ... more Glucocorticoid receptor (GR) and serotonin (5-hydroxytryptamine (5-HT)) signaling systems play a pivotal role in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis, but the molecular nature of interactions between these two systems remain largely unidentified. We used computational and experimental approaches to evaluate if DNA-protein interactions would provide a molecular link for the interaction between 5-HT and GR systems. Bioinformatic analysis identified nine binding sites in various serotonin receptors (HTR1D, HTR1F, HTR2A, HTR3A, and HTR6) for transcription factors in the GR family. Electrophoretic mobility shift assays (EMSA) using HeLa nuclear extract and purified full-length GR verified most of the predicted DNA-protein interactions. Six binding sites verified by EMSA results were evolutionarily conserved in multiple species. Multiple lines of evidence from computational and experimental analyses in this study support the potential of a molecular link between 5-HT and GR signaling systems. This finding provides new approaches to studies directed at mechanisms for glucocorticoid negative feedback regulation of the HPA axis involving 5-HT and interventional studies directed to neuropsychiatric diseases.

Psychoneuroendocrinology, Feb 1, 2008
Chronic fatigue syndrome (CFS) is a debilitating disorder of unknown etiology with no known lesio... more Chronic fatigue syndrome (CFS) is a debilitating disorder of unknown etiology with no known lesions, diagnostic markers or therapeutic intervention. The pathophysiology of CFS remains elusive, although abnormalities in the central nervous system (CNS) have been implicated, particularly hyperactivity of the serotonergic (5-hydroxytryptamine; 5-HT) system and hypoactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Since alterations in 5-HT signaling can lead to physiologic and behavioral changes, a genetic evaluation of the 5-HT system was undertaken to identify serotonergic markers associated with CFS and potential mechanisms for CNS abnormality. A total of 77 polymorphisms in genes related to serotonin synthesis (TPH2), signaling (HTR1A, HTR1E, HTR2A, HTR2B, HTR2C, HTR3A, HTR3B, HTR4, HTR5A, HTR6, and HTR7), transport (SLC6A4), and catabolism (MAOA) were examined in 137 clinically evaluated subjects (40 CFS, 55 with insufficient fatigue, and 42 non-fatigued, NF, controls) derived from a population-based CFS surveillance study in Wichita, Kansas. Of the polymorphisms examined, three markers (-1438G/A, C102T, and rs1923884) all located in the 5-HT receptor subtype HTR2A were associated with CFS when compared to NF controls. Additionally, consistent associations were observed between HTR2A variants and quantitative measures of disability and fatigue in all subjects. The most compelling of these associations was with the A allele of -1438G/A (rs6311) which is suggested to have increased promoter activity in functional studies. Further, in silico analysis revealed that the -1438 A allele creates a consensus binding site for Th1/E47, a transcription factor implicated in the development of the nervous system. Electrophoretic mobility shift assay supports allele-specific binding of E47 to the A allele but not the G allele at this locus. These data indicate that sequence variation in HTR2A, potentially resulting in its enhanced activity, may be involved in the pathophysiology of CFS.

The Journal of Molecular Diagnostics, Feb 1, 2001
We evaluated real-time (kinetic) reverse transcription-polymerase chain reaction (RT-PCR) to vali... more We evaluated real-time (kinetic) reverse transcription-polymerase chain reaction (RT-PCR) to validate differentially expressed genes identified by DNA arrays. Gene expression of two keratinocyte subclones differing in the physical state of human papillomavirus (episomal or integrated) was used as a model system. High-density filter arrays identified 444 of 588 genes as either negative or expressed with less than twofold difference, and the other 144 genes as expressed uniquely or with more than twofold difference between the two subclones. Real-time RT-PCR used LightCycler-based SYBR Green I dye detection and melting curve analysis to validate the relative change in gene expression. Real-time RT-PCR confirmed the change in expression of 17 of 24 (71%) genes identified by high-density filter arrays. Genes with strong hybridization signals and at least twofold difference were likely to be validated by real-time RT-PCR. This data suggests that (i) both hybridization intensity and the level of differential expression determine the likelihood of validating high-density filter array results and (ii) genes identified by DNA arrays with a two-to fourfold difference in expression cannot be eliminated as false nor be accepted as true without validation. Real-time RT-PCR based on Light-Cycler technology is well-suited to validate DNA array results because it is quantitative, rapid, and requires 1000-fold less RNA than conventional assays.
Acta horticulturae, Jan 21, 1983

Background: There is no consistent evidence of specific gene(s) or molecular pathways that contri... more Background: There is no consistent evidence of specific gene(s) or molecular pathways that contribute to the pathogenesis, therapeutic intervention or diagnosis of chronic fatigue syndrome (CFS). While multiple studies support a role for genetic variation in CFS, genome-wide efforts to identify associated loci remain unexplored. We employed a novel convergent functional genomics approach that incorporates the findings from single-nucleotide polymorphism (SNP) and mRNA expression studies to identify associations between CFS and novel candidate genes for further investigation. Methods: We evaluated 116,204 SNPs in 40 CFS and 40 nonfatigued control subjects along with mRNA expression of 20,160 genes in a subset of these subjects (35 CFS subjects and 27 controls) derived from a population-based study. Results: Sixty-five SNPs were nominally associated with CFS (p (GRIK2) and neuronal PAS domain protein 2 (NPAS2), were identified by both SNP and gene expression analyses. Subjects with the G allele of rs2247215 (GRIK2) were more likely to have CFS (p = 0.0005), and CFS subjects showed decreased GRIK2 expression (10-fold; p = 0.015). Subjects with the T allele of rs356653 (NPAS2) were more likely to have CFS (p = 0.0007), and NPAS2 expression was increased (10-fold; p = 0.027) in those with CFS. Conclusion: Using an integrated genomic strategy, this study suggests a possible role for genes involved in glutamatergic neurotransmission and circadian rhythm in CFS and supports further study of novel candidate genes in independent populations of CFS subjects.
Uploads
Papers by Mangalathu Rajeevan