Papers by Antonio Diaz-Espejo

Proceedings of the Conference on Information Technology for Social Good
New challenges such as climate change and sustainability arise in society influencing not only en... more New challenges such as climate change and sustainability arise in society influencing not only environmental issues but human's health directly. To face these new challenges IT technologies and their application to environmental intelligent monitoring become into a powerful tool to set new policies and blueprints to contribute to social good. In the new H2020 project, WatchPlant will provide new tools for environmental intelligence monitoring by the use of plants as "well-being" sensors of the environment they inhabit. This will be possible by equipping plants with a net of communicated wireless self-powered sensors, coupled with artificial intelligence (AI) to become plants into "biohybrid organisms" to test exposure-effects links between plant and the environment. It will become plants into a new tool to be aware of the environment status in a very early stage towards in-situ monitoring. Additionally, the system is devoted to be sustainable and energy-efficient thanks to the use of clean energy sources such as solar cells and a enzymatic biofuel cell (BFC) together with its self-deployment, self-awareness, adaptation, artificial evolution and the AI capabilities. In this concept paper, WatchPlant will envision how to face this challenge by joining interdisciplinary efforts to access the plant sap for energy harvesting and sensing purposes and become plants into "biohybrid organisms" to benefit social good in terms of environmental monitoring in urban scenarios.

Estuarine, Coastal and Shelf Science, 2001
Spartina densiflora is a species of South American origin that has invaded the marshes of the Gul... more Spartina densiflora is a species of South American origin that has invaded the marshes of the Gulf of Cádiz, in many of which it has become the most abundant plant. This work studies six populations of S. densiflora representative of the physiographic positions most commonly occupied by the species. The aspects considered are redox potential, conductivity and pH of the sediment, below-and above-ground biomass, stem density, rates of flowering and production of vegetative propagules. Eh and conductivity values vary greatly, responding to differences in tidal effect. The below-ground biomass (in particular, live rhizomes) is accumulated mostly in the first centimetres of the soil; mean values of total below-ground biomass are between 6961 and 30 696 g DW m 2 . Above-ground biomass levels for the populations ranges between 419 and 15 251 g DW m 2 . The stem density within the tussocks is high, between 3985 and 10 513 stems m 2 , with higher percentages of live stems on low and brackish marshes compared with those on higher topographic levels. This accumulation of dead and live intratussock biomass is important for the ability to exclude competitors. The flowering rates vary depending on topographic position, with maximum values being recorded in the low marsh (37·6%) and minima in the high marsh (0·1 to 0·3%). Besides the production of ramets from below-ground rhizomes (common to all species of the genus), S. densiflora presents another mode of asexual reproduction, in which extravaginal tillers are originated from the nodes of senescent ramets; populations on the higher levels of the marshes present higher densities of these propagules, with a negative correlation between rate of flowering and rate of propagule production. Nevertheless, the contribution of these propagules to the total stem population is very small. Our results show a high tolerance of S. densiflora to different environmental factors, an intense occupation of the available below-ground and above-ground space, and the capacity of sexual reproduction and of producing stems that sprout directly from the upper part of the canopy of S. densiflora, aspects that help to explain the ecological success of this species in the marshes of the Gulf of Cádiz.

Plant, cell & environment, Jan 30, 2014
Changes in net CO2 assimilation rate (A) are often partitioned into contributions from changes in... more Changes in net CO2 assimilation rate (A) are often partitioned into contributions from changes in different variables using an approach that is based on an expression from calculus: namely the definition of the exact differential of A, which states that an infinitesimal change in A (dA) is equal to the sum of infinitesimal changes in each of the underlying variables, each multiplied by the partial derivative of A with respect to the variable. Finite changes in A can thus be partitioned by integrating this sum across a finite interval. The most widely used method of estimating that integral is a coarse discrete approximation that uses partial derivatives of the natural logarithm of A rather than A itself. This yields biased and ambiguous estimates of partitioned changes in A. We present an alternative partitioning approach based on direct numerical integration of dA. The new approach does not require any partial derivatives to be computed, and it can be applied under any conditions t...

Strobilurins are one of the most important classes of agricultural fungicides. In addition to the... more Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered.

This study tests the hypothesis that diffusional limitation of photosynthesis, rather than light,... more This study tests the hypothesis that diffusional limitation of photosynthesis, rather than light, determines the distribution of photosynthetic capacity in olive leaves under drought conditions. The crowns of four olive trees growing in an orchard were divided into two sectors: one sector absorbed most of the radiation early in the morning (MS) while the other absorbed most in the afternoon (AS). When the peak of radiation absorption was higher in MS, air vapour pressure deficit (VPD) was not high enough to provoke stomatal closure. In contrast, peak radiation absorption in AS coincided with the daily peak in VPD. In addition, two soil water treatments were evaluated: irrigated trees (I) and non-irrigated trees (nI). The seasonal evolution of leaf water potential, leaf gas exchange and photosynthetic capacity were measured throughout the tree crowns in spring and summer. Results showed that stomatal conductance was reduced in nI trees in summer as a consequence of soil water stress, which limited their net assimilation rate. Olive leaves displayed isohydric behaviour and no important differences in the diurnal course of leaf water potentials among treatments and sectors were found. Seasonal diffusional limitation of photosynthesis was mainly increased in nI trees, especially as a result of stomatal limitation, although mesophyll conductance (gm) was found to decrease in summer in both treatments and sectors. A positive relationship between leaf nitrogen content with both leaf photosynthetic capacity and the daily integrated quantum flux density was found in spring, but not in summer. The relationship between photosynthetic capacity and gm was curvilinear. Leaf temperature also affected to gm with an optimum temperature at 29°C. AS showed larger biochemical limitation than MS in August in both treatments. All these suggest that both diffusional limitation and the effect of leaf temperature could be involved in the seasonal reduction of photosynthetic capacity of olive leaves. This work highlights the need for models of plant growth and ecosystem function to incorporate new parameters affecting the distribution of photosynthetic capacity in canopies.
Plant Science, 2014
Please cite this article in press as: J. Galmés, et al., Rubisco catalytic properties optimized f... more Please cite this article in press as: J. Galmés, et al., Rubisco catalytic properties optimized for present and future climatic conditions, Plant Sci. (2014), http://dx.
Please cite this article in press as: J. Flexas, et al., Stomatal and mesophyll conductances to C... more Please cite this article in press as: J. Flexas, et al., Stomatal and mesophyll conductances to CO 2 in different plant groups: Underrated factors for predicting leaf photosynthesis responses to climate change? Plant Sci. (2014), http://dx.
Understanding of the cause-effect relationships between culture conditions (carbon source: sucros... more Understanding of the cause-effect relationships between culture conditions (carbon source: sucrose, plant growth regulators: type and concentration of auxins) and growth parameters (survival, root number and length, plantlet length and height, etc.) is essential for developing quality micropropagated plants.

Physiologia Plantarum, 2014
Previous studies have reported correlation of leaf hydraulic vulnerability with pressure-volume p... more Previous studies have reported correlation of leaf hydraulic vulnerability with pressure-volume parameters related to cell turgor. This link has been explained on the basis of the effects of turgor on connectivity among cells and tissue structural integrity, which affect leaf water transport. In this study, we tested the hypothesis that osmotic adjustment to water stress would shift the leaf vulnerability curve toward more negative water potential (Ψ leaf ) by increasing turgor at low Ψ leaf . We measured leaf hydraulic conductance (K leaf ), K leaf vulnerability [50 and 80% loss of K leaf (P 50 and P 80 ); |Ψ leaf | at 50 and 80% loss of K leaf , respectively), bulk leaf water relations, leaf gas exchange and sap flow in two Vitis vinifera cultivars (Tempranillo and Grenache), under two water treatments. We found that P 50 , P 80 and maximum K leaf decreased seasonally by more than 20% in both cultivars and watering treatments. However, K leaf at −2 MPa increased threefold, while osmotic potential at full turgor and turgor loss point decreased. Our results indicate that leaf resistance to hydraulic dysfunction is seasonally plastic, and this plasticity may be mediated by osmotic adjustment.

The control of plant transpiration by stomata under water stress and recovery conditions is of pa... more The control of plant transpiration by stomata under water stress and recovery conditions is of paramount importance for plant performance and survival. Although both chemical and hydraulic signals emitted within a plant are considered to play a major role in controlling stomatal dynamics, they have rarely been assessed together. The aims of this study were to evaluate (i) the dynamics of chemical and hydraulic signals at leaf, stem and root level, and (ii) their effect on the regulation of stomatal conductance (g s ) during water stress and recovery. Measurements of g s , water potential, abscisic acid (ABA) content and loss of hydraulic functioning at leaf, stem and root level were conducted during a water stress and recovery period imposed on 1-year-old olive plants (Olea europaea L.). Results showed a strong hydraulic segmentation in olive plants, with higher hydraulic functioning losses in roots and leaves than in stems. The dynamics of hydraulic conductance of roots and leaves observed as water stress developed could explain both a protection of the hydraulic functionality of larger organs of the plant (i.e., branches, etc.) and a role in the down-regulation of g s . On the other hand, ABA also increased, showing a similar pattern to g s dynamics, and thus its effect on g s in response to water stress cannot be ruled out. However, neither hydraulic nor non-hydraulic factors were able to explain the delay in the full recovery of g s after soil water availability was restored.

Plant Biology, 2012
The non-invasive leaf patch clamp pressure (LPCP) probe measures the attenuated pressure of a lea... more The non-invasive leaf patch clamp pressure (LPCP) probe measures the attenuated pressure of a leaf patch, P(p) , in response to an externally applied magnetic force. P(p) is inversely coupled with leaf turgor pressure, P(c) , i.e. at high P(c) values the P(p) values are small and at low P(c) values the P(p) values are high. This relationship between P(c) and P(p) could also be verified for 2-m tall olive trees under laboratory conditions using the cell turgor pressure probe. When the laboratory plants were subjected to severe water stress (P(c) dropped below ca. 50 kPa), P(p) curves show reverse diurnal changes, i.e. during the light regime (high transpiration) a minimum P(p) value, and during darkness a peak P(p) value is recorded. This reversal of the P(p) curves was completely reversible. Upon watering, the original diurnal P(p) changes were re-established within 2-3 days. Olive trees in the field showed a similar turnover of the shape of the P(p) curves upon drought, despite pronounced fluctuations in microclimate. The reversal of the P(p) curves is most likely due to accumulation of air in the leaves. This assumption was supported with cross-sections through leaves subjected to prolonged drought. In contrast to well-watered leaves, microscopic inspection of leaves exhibiting inverse diurnal P(p) curves revealed large air-filled areas in parenchyma tissue. Significantly larger amounts of air could also be extracted from water-stressed leaves than from well-watered leaves using the cell turgor pressure probe. Furthermore, theoretical analysis of the experimental P(p) curves shows that the propagation of pressure through the nearly turgorless leaf must be exclusively dictated by air. Equations are derived that provide valuable information about the water status of olive leaves close to zero P(c) .
Spanish Journal of Agricultural Research, 2009
Conservation tillage has been promoted as a solution to counteract constraints caused by intensiv... more Conservation tillage has been promoted as a solution to counteract constraints caused by intensive agriculture. In this work the effects of two conservation tillage systems, reduced tillage (RT) and no-tillage (NT) were compared to the traditional tillage (TT) in a long-(15 years, RT) and short-term experiment (3 years, NT). Both experiments were carried out under semi-arid, rainfed agriculture of Mediterranean SW Spain. Tillage caused a sharp increase in soil CO 2 emissions immediately after tillage implementation, with a maximum value of 6.24 g CO 2 m -2 h -1 under long-term TT treatment.
Uploads
Papers by Antonio Diaz-Espejo