Original Publications by Jaswinder K Sethi

Background/Objectives The increased prevalence of obesity has prompted great strides in our under... more Background/Objectives The increased prevalence of obesity has prompted great strides in our understanding of specific adipose depots and their involvement in cardio-metabolic health. However, the impact of obesity on dermal white adipose tissue (dWAT) and dermal microvascular functionality remains unclear. This study aimed to investigate the temporal changes that occur in dWAT and dermal microvascular functionality during the development of diet-induced obesity and type 2 diabetes in mice. Methods Metabolic phenotyping of a murine model of hypercaloric diet (HCD)-induced obesity and type 2 diabetes was performed at three time points that reflected three distinct stages of disease development; 2 weeks of HCD-overweight-metabolically healthy, 4 weeks of HCD-obese-prediabetic and 12 weeks of HCD-obese-type 2 diabetic mice. Expansion of dWAT was characterized histologically, and changes in dermal microvascular reactivity were assessed in response to pressure and the vasodilators SNP and Ach. Results HCD resulted in a progressive expansion of dWAT and increased expression of pro-inflammatory markers (IL1β and COX-2). Impairments in pressure-induced (PIV) and Ach-induced (endothelium-dependent) vasodilation occurred early, in overweight-metabolically healthy mice. Residual vasodilatory responses were NOS-independent but sensitive to COX inhibition. These changes were associated with reductions in NO and adiponectin bioavailability, and rescued by exogenous adiponectin or hyperinsulinemia. Obese-prediabetic mice continued to exhibit impaired Ach-dependent vasodilation but PIV appeared normalized. This normalization coincided with elevated endogenous adiponectin and insulin levels, and was sensitive to NOS, COX and PI3K, inhibition. In obese-type 2 diabetic mice, both Ach-stimulated and pressure-induced vasodilatory responses were increased through enhanced COX-2-dependent prostaglandin response. Conclusions We demonstrate that the development of obesity, metabolic dysfunction and type 2 diabetes, in HCD-fed mice, is accompanied by increased dermal adiposity and associated metaflammation in dWAT. Importantly, these temporal changes are also linked to disease stage-specific dermal microvascular reactivity, which may reflect adaptive mechanisms driven by metaflammation.

Obesity increases the risk of developing life-threatening metabolic diseases including cardiovasc... more Obesity increases the risk of developing life-threatening metabolic diseases including cardiovascular disease, fatty liver disease, diabetes, and cancer. Efforts to curb the global obesity epidemic and its impact have proven unsuccessful in part by a limited understanding of these chronic progressive diseases. It is clear that low-grade chronic inflammation, or metaflammation, underlies the pathogenesis of obesity-associated type 2 diabetes and atherosclerosis. However, the mechanisms that maintain chronicity and prevent inflammatory resolution are poorly understood. Here, we show that inhibitor of κB kinase epsilon (IKBKE) is a novel regulator that limits chronic inflammation during metabolic disease and atherosclerosis. The pathogenic relevance of IKBKE was indicated by the colocalization with macrophages in human and murine tissues and in atherosclerotic plaques. Genetic ablation of IKBKE resulted in enhanced and prolonged priming of the NLRP3 inflammasome in cultured macrophages, in hypertrophic adipose tissue, and in livers of hypercholesterolemic mice. This altered profile associated with enhanced acute phase response, deregulated cholesterol metabolism, and steatoheptatitis. Restoring IKBKE only in hematopoietic cells was sufficient to reverse elevated inflammasome priming and these metabolic features. In advanced atherosclerotic plaques, loss of IKBKE and hematopoietic cell restoration altered plaque composition. These studies reveal a new role for hematopoietic IKBKE: to limit inflammasome priming and metaflammation

Chronic hyperglycemia induces insulin resistance by mechanisms that are incompletely understood. ... more Chronic hyperglycemia induces insulin resistance by mechanisms that are incompletely understood. One model of hyperglycemia-induced insulin resistance involves chronic preincubation of adipocytes in the presence of high glucose and low insulin concentrations. We have previously shown that the mTOR complex 1 (mTORC1) plays a partial role in the development of insulin resistance in this model. Here, we demonstrate that treatment with Go-6976, a widely used ‘‘specific’’ inhibitor of cPKCs, alleviates hyperglycemia-induced insulin resistance. However, the effects of mTOR inhibitor, rapamycin and Go-6976 were not additive and only rapamycin restored impaired insulin-stimulated AKT activation. Although, PKCa, (but not –b) was abundantly expressed in these adipocytes, our studies indicate cPKCs do not play a major role in causing insulin-resistance in this model. There was no evidence of changes in the expression or phosphorylation of PKCa, and PKCa knock-down did not prevent the reduction of insulin-stimulated glucose transport. This was also consistent with lack of IRS-1 phosphorylation on Ser-24 in hyperglycemia-induced insulin-resistant adipocytes. Treatment with Go- 6976 did inhibit a component of the mTORC1 pathway, as evidenced by decreased phosphorylation of S6 ribosomal protein. Raptor knock-down enhanced the effect of insulin on glucose transport in insulin resistant adipocytes. Go-6976 had the same effect in control cells, but was ineffective in cells with Raptor knock-down. Taken together these findings suggest that Go-6976 exerts its effect in alleviating hyperglycemia-induced insulin-resistance independently of cPKC inhibition and may target components of the mTORC1 signaling pathway.

Diabetes, Aug 6, 2013
The epidemic of obesity imposes unprecedented challenges on human adipose tissue (WAT) storage ca... more The epidemic of obesity imposes unprecedented challenges on human adipose tissue (WAT) storage capacity that may benefit from adaptive mechanisms to maintain adipocyte functionality. Here, we demonstrate that changes in the regulatory feedback set point control of Insig1/SREBP1 represent an adaptive response that preserves WAT lipid homeostasis in obese and insulinresistant states. In our experiments, we show that Insig1 mRNA expression decreases in WAT from mice with obesity-associated insulin resistance and from morbidly obese humans and in in vitro models of adipocyte insulin resistance. Insig1 downregulation is part of an adaptive response that promotes the maintenance of SREBP1 maturation and facilitates lipogenesis and availability of appropriate levels of fatty acid unsaturation, partially compensating the antilipogenic effect associated with insulin resistance. We describe for the first time the existence of this adaptive mechanism in WAT, which involves Insig1/SREBP1 and preserves the degree of lipid unsaturation under conditions of obesity-induced insulin resistance. These adaptive mechanisms contribute to maintain lipid desaturation through preferential SCD1 regulation and facilitate fat storage in WAT, despite ongoing metabolic stress. Diabetes 62:3697-3708, 2013 T he epidemic of obesity is testing the capacity of white adipose tissue (WAT) to cope with an unprecedented nutritional pressure and demand to expand. We and others have proposed that the expansion and dysfunction of WAT may be an important pathogenic contributor to obesity-associated metabolic complications (1). However, a recurrent observation from clinical studies is that obese patients maintain a remarkable capacity to store fat before adverse metabolic effects occur. Moreover, we have recently demonstrated, using a monozygotic twin cohort discordant for obesity, that while expanding, the WAT adapts its biochemical features to maintain its biophysical characteristics and preserves its functionality by increasing the degree of fatty acid (FA) unsaturation and chain length in adipocyte membrane phospholipids (PLs). This implies the existence of adaptive homeostatic mechanisms that preserve WAT functionality (2).

Diabetes, 2007
Insulin sensitivity of hepatic glucose and lipid metabolism in animal models of hepatic steatosis... more Insulin sensitivity of hepatic glucose and lipid metabolism in animal models of hepatic steatosis Abstract A growing body of evidence implicates ceramide and/or its glycosphingolipid metabolites in the pathogenesis of insulin resistance. We have developed a highly specific small molecule inhibitor of glucosylceramide synthase, an enzyme which catalyses a necessary step in the conversion of ceramide to glycosphingolipids. In cultured adipocytes the iminosugar derivative N-(5'-adamantane-1'-ylmethoxy)-pentyl-1-deoxynojirimycin (AMP-DNM), enhanced insulin-stimulated glucose uptake and reversed TNF-alpha induced abnormalities in insulin signal transduction. When administered to mice, AMP-DNM significantly reduced glycosphingolipid but not ceramide concentrations in various tissues. Treatment of ob/ob mice with AMP-DNM for 7 days normalised their elevated tissue glucosylceramide levels, markedly lowered circulating glucose levels, improved oral glucose tolerance, improved insulin sensitivity in muscle and liver, reduced hepatic fat deposition and increased cell surface expression of GLUT4 on adipocytes. These findings provide evidence that metabolites of ceramide, rather than ceramide itself, may be involved in mediating the link between obesity and insulin resistance and that interference with glycosphingolipid biosynthesis might present a novel approach to the therapy of states of impaired insulin action such as type 2 diabetes.

Diabetes, 2005
The nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) is critically r... more The nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) is critically required for adipogenesis. PPARgamma exists as two isoforms, gamma1 and gamma2. PPARgamma2 is the more potent adipogenic isoform in vitro and is normally restricted to adipose tissues, where it is regulated more by nutritional state than PPARgamma1. To elucidate the relevance of the PPARgamma2 in vivo, we generated a mouse model in which the PPARgamma2 isoform was specifically disrupted. Despite similar weight, body composition, food intake, energy expenditure, and adipose tissue morphology, male mice lacking the gamma2 isoform were more insulin resistant than wild-type animals when fed a regular diet. These results indicate that insulin resistance associated with ablation of PPARgamma2 is not the result of lipodystrophy and suggests a specific role for PPARgamma2 in maintaining insulin sensitivity independently of its effects on adipogenesis. Furthermore, PPARgamma2 knockout mice fed a high-fat diet did not become more insulin resistant than those on a normal diet, despite a marked increase in their mean adipocyte cell size. These findings suggest that PPARgamma2 is required for the maintenance of normal insulin sensitivity in mice but also raises the intriguing notion that PPARgamma2 may be necessary for the adverse effects of a high-fat diet on carbohydrate metabolism.
Diabetes, 2009
OBJECTIVE-Wnt signaling inhibits adipogenesis, but its regulation, physiological relevance, and m... more OBJECTIVE-Wnt signaling inhibits adipogenesis, but its regulation, physiological relevance, and molecular effectors are poorly understood. Here, we identify the Wnt modulator Dap-per1/Frodo1 (Dact1) as a new preadipocyte gene involved in the regulation of murine and human adipogenesis.

Diabetologia, 2006
Aims/hypothesis Recent studies suggest that wingless-type MMTV integration site family, member 10... more Aims/hypothesis Recent studies suggest that wingless-type MMTV integration site family, member 10B (WNT10B) may play a role in the negative regulation of adipocyte differentiation in vitro and in vivo. In order to determine whether mutations in WNT10B contribute to human obesity, we screened two independent populations of obese subjects for mutations in this gene. Subjects and methods We studied 96 subjects with severe obesity of early onset (less than 10 years of age) from the UK Genetics of Obesity Study and 115 obese Italian subjects of European origin. Results One proband with early-onset obesity was found to be heterozygous for a C256Y mutation, which abrogated the ability of WNT10B to activate canonical WNT signalling and block adipogenesis and was not found in 600 control alleles. All relatives of the proband who carried this allele were either overweight or obese. Three other rare missense variants were found in obese probands, but these did not clearly cosegregate with obesity in family studies and one (P301S), which was found in three unrelated subjects with early-onset obesity, had normal functional properties. Conclusions/interpretation These mutations represent the first naturally occurring missense variants of WNT10B. While the pedigree analysis in the case of C256Y WNT10B does not provide definitive proof of a causal link of this variant with obesity, the finding of a non-functioning WNT10B allele in a human family affected by obesity should encourage further study of this gene in other obese populations.

Cell death and differentiation, 2007
Tumour necrosis factor-a (TNF-a), a proinflammatory cytokine, is a potent negative regulator of a... more Tumour necrosis factor-a (TNF-a), a proinflammatory cytokine, is a potent negative regulator of adipocyte differentiation. However, the mechanism of TNF-a-mediated antiadipogenesis remains incompletely understood. In this study, we first confirm that TNF-a inhibits adipogenesis of 3T3-L1 preadipocytes by preventing the early induction of the adipogenic transcription factors peroxisome proliferator-activated receptor-c (PPARc) and CCAAT/enhancer binding protein-a (C/EBPa). This suppression coincides with enhanced expression of several reported mediators of antiadipogenesis that are also targets of the Wnt/b-catenin/T-cell factor 4 (TCF4) pathway. Indeed, we found that TNF-a enhanced TCF4-dependent transcriptional activity during early antiadipogenesis, and promoted the stabilisation of b-catenin throughout antiadipogenesis. We analysed the effect of TNF-a on adipogenesis in 3T3-L1 cells in which b-catenin/TCF signalling was impaired, either via stable knockdown of b-catenin, or by overexpression of dominant-negative TCF4 (dnTCF4). The knockdown of b-catenin enhanced the adipogenic potential of 3T3-L1 preadipocytes and attenuated TNF-a-induced antiadipogenesis. However, b-catenin knockdown also promoted TNF-a-induced apoptosis in these cells. In contrast, overexpression of dnTCF4 prevented TNF-a-induced antiadipogenesis but showed no apparent effect on cell survival. Finally, we show that TNF-a-induced antiadipogenesis and stabilisation of b-catenin requires a functional death domain of TNF-a receptor 1 (TNFR1). Taken together these data suggest that TNFR1-mediated death domain signals can inhibit adipogenesis via a b-catenin/TCF4-dependent pathway.

Diabetes, 2012
Low concentrations of insulin-like growth factor (IGF) binding protein-1 (IGFBP1) are associated ... more Low concentrations of insulin-like growth factor (IGF) binding protein-1 (IGFBP1) are associated with insulin resistance, diabetes, and cardiovascular disease. We investigated whether increasing IGFBP1 levels can prevent the development of these disorders. Metabolic and vascular phenotype were examined in response to human IGFBP1 overexpression in mice with dietinduced obesity, mice heterozygous for deletion of insulin receptors (IR +/2 ), and ApoE 2/2 mice. Direct effects of human (h) IGFBP1 on nitric oxide (NO) generation and cellular signaling were studied in isolated vessels and in human endothelial cells. IGFBP1 circulating levels were markedly suppressed in dietaryinduced obese mice. Overexpression of hIGFBP1 in obese mice reduced blood pressure, improved insulin sensitivity, and increased insulin-stimulated NO generation. In nonobese IR +/2 mice, overexpression of hIGFBP1 reduced blood pressure and improved insulin-stimulated NO generation. hIGFBP1 induced vasodilatation independently of IGF and increased endothelial NO synthase (eNOS) activity in arterial segments ex vivo, while in endothelial cells, hIGFBP1 increased eNOS Ser 1177 phosphorylation via phosphatidylinositol 3-kinase signaling. Finally, in ApoE 2/2 mice, overexpression of hIGFBP1 reduced atherosclerosis. These favorable effects of hIGFBP1 on insulin sensitivity, blood pressure, NO production, and atherosclerosis suggest that increasing IGFBP1 concentration may be a novel approach to prevent cardiovascular disease in the setting of insulin resistance and diabetes. Diabetes 61:915-924, 2012

Diabetes, 2007
Proliferation of adipocyte precursors and their differentiation into mature adipocytes contribute... more Proliferation of adipocyte precursors and their differentiation into mature adipocytes contributes to the development of obesity in mammals. IGF-I is a potent mitogen and important stimulus for adipocyte differentiation. The biological actions of IGFs are closely regulated by a family of IGF-binding proteins (IGFBPs), which exert predominantly inhibitory effects. IGFBP-2 is the principal binding protein secreted by differentiating white preadipocytes, suggesting a potential role in the development of obesity. We have generated transgenic mice overexpressing human IGFBP-2 under the control of its native promoter, and we show that overexpression of IGFBP-2 is associated with reduced susceptibility to obesity and improved insulin sensitivity. Whereas wild-type littermates developed glucose intolerance and increased blood pressure with aging, mice overexpressing IGFBP-2 were protected. Furthermore, when fed a high-fat/high-energy diet, IGFBP-2-overexpressing mice were resistant to the development of obesity and insulin resistance. This lean phenotype was associated with decreased leptin levels, increased glucose sensitivity, and lower blood pressure compared with wildtype animals consuming similar amounts of high-fat diet. Our in vitro data suggest a direct effect of IGFBP-2 preventing adipogenesis as indicated by the ability of recombinant IGFBP-2 to impair 3T3-L1 differentiation. These findings suggest an important, novel role for IGFBP-2 in obesity prevention.

Journal of neurochemistry, 2008
This study investigates involvement of β-catenin signalling in regulation of p-glycoprotein (p-gp... more This study investigates involvement of β-catenin signalling in regulation of p-glycoprotein (p-gp) expression in endothelial cells derived from brain vasculature. Pharmacological interventions that enhance or that block β-catenin signalling were applied to primary rat brain endothelial cells and to immortalized human brain endothelial cells, hCMEC/D3, nuclear translocation of β-catenin being determined by immunocytochemistry and by western blot analysis to confirm effectiveness of the manipulations. Using the specific glycogen synthase kinase-3 (GSK-3) inhibitor 6-bromoindirubin-3′-oxime enhanced β-catenin and increased p-gp expression including activating the MDR1 promoter. These increases were accompanied by increases in p-gp-mediated efflux capability as observed from alterations in intracellular fluorescent calcein accumulation detected by flow cytometry. Similar increases in p-gp expression were noted with other GSK-3 inhibitors, i.e. 1-azakenpaullone or LiCl. Application of Wnt agonist [2-amino-4-(3,4-(methylenedioxy) benzylamino)-6-(3-methoxyphenyl)pyrimidine] also enhanced β-catenin and increased transcript and protein levels of p-gp. By contrast, down-regulating the pathway using Dickkopf-1 or quercetin decreased p-gp expression. Similar changes were observed with multidrug resistance protein 4 and breast cancer resistance protein, both known to be present at the blood–brain barrier. These results suggest that regulation of p-gp and other multidrug efflux transporters in brain vasculature can be influenced by β-catenin signalling.

Molecular endocrinology (Baltimore, Md.), 2006
proteins on serine residues is an important posttranslational modification that is linked to insu... more proteins on serine residues is an important posttranslational modification that is linked to insulin resistance. Several phosphoserine sites on IRS1 have been identified; the majority are located proximal to the phosphotryosine-binding domain or near key receptor tyrosine kinase substrateand/or Src-homology 2 domain-binding sites. Here we report on the characterization of a serine phosphorylation site in the N-terminal pleckstrin homology (PH) domain of IRS1. Bioinformatic tools identify serine 24 (Ser24) as a putative substrate site for the protein kinase C (PKC) family of serine kinases. We demonstrate that this site is indeed a bona fide substrate for conventional PKC. In vivo, IRS-1 is also phosphorylated on Ser24 after phorbol 12-myristate 13-acetate treatment of cells, and isoform-selective inhibitor studies suggest the involvement of PKC␣. By comparing the pharmaco-logical characteristics of phorbol 12-myristate 13acetate-stimulated Ser24 phosphorylation with phosphorylation at two other sites previously linked to PKC activity (Ser307 and Ser612), we show that PKC␣ is likely to be directly involved in Ser24 phosphorylation, but indirectly involved in Ser307 and Ser612 phosphorylation. Using Ser24Asp IRS-1 mutants to mimic the phosphorylated residue, we demonstrate that the phosphorylation status of Ser24 does play an important role in regulating phosphoinositide binding to, and the intracellular localization of, the IRS1-PH domain, which can ultimately impinge on insulin-stimulated glucose uptake. Hence we provide evidence that IRS1-PH domain function is important for normal insulin signaling and is regulated by serine phosphorylation in a manner that could contribute to insulin resistance. (Molecular Endocrinology 20: [1838][1839][1840][1841][1842][1843][1844][1845][1846][1847][1848][1849][1850][1851][1852] 2006)

Diabetes, 2007
A growing body of evidence implicates ceramide and/or its glycosphingolipid metabolites in the pa... more A growing body of evidence implicates ceramide and/or its glycosphingolipid metabolites in the pathogenesis of insulin resistance. We have developed a highly specific small molecule inhibitor of glucosylceramide synthase, an enzyme that catalyzes a necessary step in the conversion of ceramide to glycosphingolipids. In cultured 3T3-L1 adipocytes, the iminosugar derivative N-(5-adamantane-1-yl-methoxy)pentyl-1-deoxynojirimycin (AMP-DNM) counteracted tumor necrosis factor-␣-induced abnormalities in glycosphingolipid concentrations and concomitantly reversed abnormalities in insulin signal transduction. When administered to mice and rats, AMP-DNM significantly reduced glycosphingolipid but not ceramide concentrations in various tissues. Treatment of ob/ob mice with AMP-DNM normalized their elevated tissue glucosylceramide levels, markedly lowered circulating glucose levels, improved oral glucose tolerance, reduced A1C, and improved insulin sensitivity in muscle and liver. Similarly beneficial metabolic effects were seen in high fat-fed mice and ZDF rats. These findings provide further evidence that glycosphingolipid metabolites of ceramide may be involved in mediating the link between obesity and insulin resistance and that interference with glycosphingolipid biosynthesis might present a novel approach to the therapy of states of impaired insulin action such as type 2 diabetes.

The Journal of biological chemistry, 2004
Poxvirus zinc finger (POZ) zinc finger domain transcription factors have been shown to play a rol... more Poxvirus zinc finger (POZ) zinc finger domain transcription factors have been shown to play a role in the control of growth arrest and differentiation in several types of mesenchymal cells but not, as yet, adipocytes. We found that a POZ domain protein, factor that binds to inducer of short transcripts-1 (FBI-1), was induced during both murine and human preadipocyte differentiation with maximal expression levels seen at days 2-4. FBI-1 mRNA was expressed in human adipose tissue with the highest levels found in samples from morbidly obese subjects. Murine cell lines constitutively expressing FBI-1 showed evidence for accelerated adipogenesis with earlier induction of markers of differentiation and enhanced lipid accumulation, suggesting that FBI-1 may be an active participant in the differentiation process. Consistent with the properties of this family of proteins in other cell systems, 3T3L1 cells stably overexpressing FBI-1 showed reduced DNA synthesis and reduced expression of cyclin A, cyclin-dependent kinase 2, and p107, proteins known to be involved in the regulation of mitotic clonal expansion. In addition, FBI-1 reduced the transcriptional activity of the cyclin A promoter. Thus, FBI-1, a POZ zinc finger transcription factor, is induced during the early phases of human and murine preadipocyte differentiation where it may contribute to adipogenesis through influencing the switch from cellular proliferation to terminal differentiation.

The Biochemical journal, 2004
β-Catenin plays a dual role as an adhesion molecule in adherens junctions at the plasma membrane ... more β-Catenin plays a dual role as an adhesion molecule in adherens junctions at the plasma membrane and as a key intermediate in the canonical Wnt signalling pathway. The cytosolic soluble pool of β-catenin, involved in the transmission of the Wnt signal, is normally subjected to rapid protein degradation. On activation of the Wnt cascade, β-catenin becomes stabilized and then translocates into the nucleus where it co-activates transcription factors of the TCF (T-cell factor)/LEF (lymphoid enhancer factor) family. The expression of plasma membrane-targeted forms of β-catenin has been shown to also activate TCF/LEF-dependent transcription and different mechanisms have been put forward. In the present study, we have undertaken a systematic analysis of the signalling capability of non-degradable forms of β-catenin targeted to different cellular compartments. β-Catenin targeted to the plasma membrane activated transcription to a greater extent compared with non-targeted β-catenin, and led to a marked stabilization of cytosolic soluble β-catenin. These effects were independent of the competition with endogenous β-catenin for binding to E-cadherin at the plasma membrane, since targeting non-degradable β-catenin to other cellular compartments, i.e. the outer mitochondrial membrane and the endoplasmic reticulum membrane, also resulted in the accumulation of cytosolic wildtype β-catenin and activation of β-catenin-dependent signalling. In contrast, nuclear-targeted β-catenin was without significant effect on cytosolic wild-type β-catenin and did not activate transcription. Our results suggest that cytosolic accumulation of β-catenin is a prerequisite for the activation of TCF/LEFdependent transcription in the nucleus.

Genome / National Research Council Canada = Génome / Conseil national de recherches Canada, 2010
Many genes express multiple transcript isoforms generated by alternative splicing of mRNA. Using ... more Many genes express multiple transcript isoforms generated by alternative splicing of mRNA. Using real-time PCR, it is straightforward to determine the relative expression level of each isoform independently. However, it is less trivial to determine the relative proportions of different isoforms in a cDNA sample. The relative proportions of different isoforms can be important, as a small change in a highly abundant transcript may be more relevant than a large change in a minimally expressed transcript. Currently, determining the relative proportions of isoforms requires the construction of a standard curve using recombinant plasmid DNA or genomic DNA. As recombinant or genomic DNA standards often amplify with different efficiencies to cDNA samples, they may give under- or overestimations of isoform abundances. The method described in this article uses a titration curve generated from the same cDNA samples measured in the experiment. By using samples with different levels of separate isoforms, it is possible to derive linear equations which, when solved, allow the determination of the proportion of each isoform within the samples under study.
The Journal of biological chemistry, 2005

Diabetes, 2009
Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin res... more Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity. Rodent and human cell cultures, whole-tissue explants, and animal models were used to determine the impact of glucocorticoids and selective 11beta-HSD1 inhibition upon insulin signaling and action. Dexamethasone decreased insulin-stimulated glucose uptake, decreased IRS1 mRNA and protein expression, and increased inactivating pSer(307) insulin receptor substrate (IRS)-1. 11beta-HSD1 activity and expression were observed in human and rodent myotubes and muscle explants. Activity was predominantly oxo-reductase, generating active glucocorticoid. A1 (selective 11beta-HSD1 inhibitor) abolished enzyme activity and blocked the increase in pSer(307) IRS1 and reduction in total IRS1 protein after treatment with 11DHC but not corticosterone. In C57Bl6/J mice, the selective 11beta-HSD1 inhibitor, A2, decreased fasting blood glucose levels and improved insulin sensitivity. In KK mice treated with A2, skeletal muscle pSer(307) IRS1 decreased and pThr(308) Akt/PKB increased. In addition, A2 decreased both lipogenic and lipolytic gene expression. Prereceptor facilitation of glucocorticoid action via 11beta-HSD1 increases pSer(307) IRS1 and may be crucial in mediating insulin resistance in skeletal muscle. Selective 11beta-HSD1 inhibition decreases pSer(307) IRS1, increases pThr(308) Akt/PKB, and decreases lipogenic and lipolytic gene expression that may represent an important mechanism underpinning their insulin-sensitizing action.

Biochemistry research international, 2012
Background. SOCS proteins are known to negatively regulate insulin signaling by inhibiting insuli... more Background. SOCS proteins are known to negatively regulate insulin signaling by inhibiting insulin receptor substrate-1 (IRS1). IRS1 has been reported to be a substrate for ubiquitin-dependent proteasomal degradation. Given that SOCS proteins can function as substrate receptor subunits of Cullin-5 E3 ubiquitin ligases, we examined whether Cullin-5 dependent ubiquitination is involved in the regulation of basal IRS1 protein stability and signal-induced IRS1 degradation. Findings. Our results indicate that basal IRS1 stability varies between cell types. However, the Cullin-5 E3 ligase does not play a major role in mediating IRS1 ubiquitination under basal conditions. Protein kinase C activation triggered pronounced IRS1 destabilization. However, this effect was also independent of the function of Cullin-5 E3 ubiquitin ligases. Conclusions. In conclusion, SOCS proteins do not exert a negative regulatory effect on IRS1 by functioning as substrate receptors for Cullin-5-based E3 ubiquitin ligases both under basal conditions and when IRS1 degradation is induced by protein kinase C activation.
Uploads
Original Publications by Jaswinder K Sethi