lindsayshuo
码龄7年
求更新 关注
提问 私信
  • 博客:205,077
    社区:2
    动态:31
    205,110
    总访问量
  • 123
    原创
  • 479
    粉丝
  • 463
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
目前就职: 安徽工程大学
加入CSDN时间: 2018-09-24

个人简介:深度学习,图像处理,机器学习,python

博客简介:

い天然呆的博客

博客描述:
深度学习、图像处理、模式识别
查看详细资料
个人成就
  • 获得612次点赞
  • 内容获得157次评论
  • 获得897次收藏
  • 代码片获得8,964次分享
  • 博客总排名47,872名
  • 原力等级
    原力等级
    5
    原力分
    1,804
    本月获得
    5
创作历程
  • 9篇
    2025年
  • 49篇
    2024年
  • 14篇
    2023年
  • 7篇
    2022年
  • 23篇
    2021年
  • 9篇
    2020年
  • 12篇
    2019年
成就勋章
TA的专栏
  • yolov5
    13篇
  • torch
    5篇
  • 动态链接库
    1篇
  • ubuntu21
    1篇
  • yolo 训练
    1篇
  • YOLO V4
    3篇
  • YOLOv5s
    4篇
  • yolov8
    1篇
  • 笔记
    4篇
  • 机器学习
    7篇
  • yolov7
    1篇
  • crnn
    1篇
  • nvidia xavier
    3篇
  • nano
    1篇
  • 树莓派
    1篇
  • pyqt5
    1篇
  • 路径跟踪
    1篇
  • 深度学习打包
    2篇
  • win10
    5篇
  • ubuntu
    21篇
  • ubuntu子系统
    2篇
  • linux
    24篇
  • 错误修正
    6篇
  • 深度学习
    13篇
  • windows批处理文件
    1篇

TA关注的专栏 126

TA关注的收藏夹 0

TA关注的社区 16

TA参与的活动 2

兴趣领域 设置
  • 大数据
    flink
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

星图计划年度征文(第1 期)—Claude Code 开发者创客大赛: AI 编程实战征文计划

随着 Claude Code 的爆火,AI 编程助手正在彻底改变开发者的工作流。它不仅能自动补全代码、优化算法,还能理解复杂需求并生成高质量脚本。 为探索 Claude Code 的潜力,CSDN 发起本次征文活动,邀请开发者分享实战经验、创新案例和技术思考,共同推动 AI 编程的普及与进化。 --- **创作主题**:用 Claude Code 重新定义编程效率 **创作方向**(供参考,鼓励自由发挥) **1. 效率革命:Claude Code 如何提升开发效率** - 对比传统编程 vs. Claude Code 辅助编程的耗时差异 - 实际项目中的效率提升案例(如快速生成 API、自动化脚本等) **2. 技术深挖:Claude Code 的高级用法** - 如何编写精准的 Prompt 让 Claude Code 生成更符合需求的代码 - 结合特定语言(Python/JS/Go等)的实战技巧 - 调试与优化 Claude Code 生成代码的方法 **3. 跨界融合:Claude Code 的创意应用** - 用 Claude Code 生成游戏逻辑、艺术代码(如 Processing 创意编程) - 结合低代码平台(如 Appsmith、Retool)快速搭建工具 - 在数据分析、爬虫、DevOps 等领域的落地案例 **4. 硬核挑战:用 Claude Code 完成一个完整项目** - 从零开始,仅依赖 Claude Code 开发一个小型应用(需附代码仓库和效果演示) - 记录开发过程中的思考、踩坑与解决方案 **5. 未来之辩:AI 编程的边界与伦理** - Claude Code 会取代程序员吗?职业发展的应对策略

325人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Ubuntu 有线网络频繁掉线?一招解决,告别反复重连!

一个简单的 managed=true 配置,就能彻底解决 Ubuntu 有线网络频繁掉线的烦恼。这再次证明了,深入理解系统配置,往往能用最小的代价,换来最大的效率提升。希望这篇指南能帮你摆脱网络困扰,享受流畅的 Ubuntu 体验!
原创
博文更新于 2025.08.12 ·
1423 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

ubuntu18安装tensorrt7.2.3+cuda11.1+cudnn8.0+opencv4.4.0+显卡驱动nvidia-driver-465+rtx3080

在官网下载TensorRT-7.2.2.3.Ubuntu-18.04.x86_64-gnu.cuda-11.1.cudnn8.0.tar.gztar xzvf TensorRT-7.2.2.3.Ubuntu-18.04.x86_64-gnu.cuda-11.1.cudnn8.0.tar.gz解压后先配置环境变量:sudo vim ~/.bashrc进入后,在最底部添加环境变量:export TRT_PATH=/home/lindsay/TensorRT-7.2.2.3export PATH=
原创
博文更新于 2025.04.02 ·
2421 阅读 ·
3 点赞 ·
10 评论 ·
20 收藏

基于Anaconda的不同环境使用boost编译libboost_python3

我使用的是Ubuntu21,系统自带python3.9,执行如下命令sudo apt-get install libboost-python-dev生成libboost_python39.so,但是我不想使用39版本的,所以尝试了通过源码编译的方式。通过以下网址进行下载:https://boostorg.jfrog.io/artifactory/main/release/这里选择1.75.0版本进行编译,进入boost源文件目录boost_1_75_0,执行以下脚本:conda activat
原创
博文更新于 2025.04.02 ·
3404 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

关于opecv的gpu版本的源码编译安装

这样,系统中不会残留无用的包,整个系统更为干净。因为在cmake时,选择了自动生成OpenCV的pkgconfig文件,在/usr/local/lib/pkgconfig路径可以看到文件。-j8表示使用多个系统内核进行编译,从而提高编译速度,不清楚自己系统内核数的,可以使用make -j$(nproc)如果编译时报错,可以尝试不使用多个内核编译,虽然需要更长的编译时间,但是可以避免一些奇怪的报错。是一个新建的空文件,直接添加路径,同理这个路径是cmake编译时填的动态库安装路径加上/lib。
原创
博文更新于 2025.04.01 ·
542 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

细微差异特征的激活函数选择

而ReLU由于在小于0部分梯度为0的特性,可能会忽略掉一些与这一个像素小点相关的微弱特征信息,使得模型难以学习到两个目标之间的细微区别,导致精度只能达到0.4左右。输入大于0时,输出等于输入,神经元“激活”。• Sigmoid:函数为f(x)=\frac{1}{1 + e^{-x}},输出值在(0,1)之间,能将输入映射到一个概率值,可用于表示两个目标的概率差异。Sigmoid的平滑特性和对所有输入的响应能力使其在处理本题中细微差异的目标时更具优势,能让模型达到0.9左右的精度。
原创
博文更新于 2025.03.04 ·
324 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

使用Python脚本转换YOLOv5配置文件到https://github.com/ultralytics/ultralytics:一个详细的指南

通过上述步骤,您可以轻松地将YOLOv5的配置文件转换为ultralytics-yolov8所需的格式,并且可以批量处理多个配置文件。这个脚本不仅可以帮助您节省时间,还能减少手动操作带来的错误。希望这篇博客能为您提供有价值的指导,让您更高效地管理深度学习项目的配置文件。
原创
博文更新于 2025.02.23 ·
425 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

TypeError: unsupported operand type(s) for ^: ‘DockWidgetFeatures‘ and ‘DockWidgetFeatures‘

【代码】TypeError: unsupported operand type(s) for ^: ‘DockWidgetFeatures‘ and ‘DockWidgetFeatures‘
原创
博文更新于 2025.02.23 ·
242 阅读 ·
2 点赞 ·
1 评论 ·
0 收藏

基于标注模板,批量复制标置标签一样的标注文件

标注时,如果相机始终不动,标签始终不动,仅仅亮度或者其他非目标标签移动时,可以使用本脚本进行批量复制。用于基于标注模板,批量复制标置标签一样的标注文件。
原创
博文更新于 2025.02.10 ·
160 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

ultralytics库的cls分类模型的结果导出以及绘制

【代码】ultralytics库的cls分类模型的结果导出以及绘制。
原创
博文更新于 2025.02.07 ·
327 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

训练集制作--利用Python进行图像和XML标注数据的批量处理

在机器学习项目中,特别是涉及到图像识别和分类的领域,经常需要对大量数据进行预处理。这些数据预处理可能包括图像转换、格式化标签、数据集划分等。本文将介绍一个基于Python的脚本,该脚本能够自动化这些常见任务,并且还支持多进程处理以加速这些操作。
原创
博文更新于 2025.01.14 ·
1121 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

关于地平线开发板使用nhwc格式的前向传播输出格式的理解

这是因为卷积操作是在图像的高度和宽度方向上滑动卷积核进行计算的,输出的数据在空间维度(高度和宽度)上的排列顺序与输入类似,通道数可能会根据卷积核的数量等因素而改变,但整体格式依然是NHWC。对于图像相关的模型,当输出是NHWC格式时,“N”代表批次大小(batch size),即一次处理的图像数量;• 例如,一个模型输出的形状为[10, 28, 28, 3](假设是一个简单的图像分类模型),这意味着一次输出10张图像,每张图像的高度是28像素、宽度是28像素,且有3个通道(可能是RGB通道)。
原创
博文更新于 2025.01.10 ·
543 阅读 ·
9 点赞 ·
0 评论 ·
4 收藏

为什么在二维卷积操作中,将宽度(W)维度放在高度(H)之前会破坏空间局部性原则,并影响缓存性能

破坏空间局部性:但是,如果我们将张量维度调整为 (N, W, H, C),即宽度(W)维度排在高度(H)之前,那么在遍历同一行中的相邻元素时,内存地址不再是连续的。例如,在读取一个3x3过滤器窗口内的数据时,假设我们正在处理第一行的前三个元素 [0,0], [0,1], [0,2],这些元素在内存中是连续存储的,这使得缓存能够高效地预取和加载这些数据,提高访问速度。因此,为了保持良好的空间局部性和高效的缓存利用,在进行二维卷积操作时,通常推荐使用 (N, H, W, C) 的内存布局。
原创
博文更新于 2025.01.09 ·
736 阅读 ·
8 点赞 ·
0 评论 ·
2 收藏

yolov5获取anchors

【代码】yolov5获取anchors。
原创
博文更新于 2025.01.07 ·
210 阅读 ·
5 点赞 ·
0 评论 ·
0 收藏

关于yolov5以及yolov8的bx, by, bw, 和 bh(anchor free 以及anchor based 的处理区别)

bx, by, bw, 和 bh 通常表示的是相对于输入图像的边界框坐标,而不是特征图的坐标。这些值是通过将模型预测的相对偏移和缩放因子转换为实际尺寸得到的。
原创
博文更新于 2024.12.25 ·
756 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

easy-eai --安装RKMPP、x264、x265、libdrm、FFmpeg(支持rkmpp)以及opencv(支持带rkmpp的ffmpeg)(适用于Rv1126平台)

RKMPP:用于编解码测试,支持RK3588、1126平台。
原创
博文更新于 2024.12.20 ·
1531 阅读 ·
23 点赞 ·
0 评论 ·
15 收藏

jetson orin系列开发版安装cuda的gpu版本的opencv

因为在cmake时,选择了自动生成OpenCV的pkgconfig文件,在/usr/local/lib/pkgconfig路径可以看到文件opencv4.pc。是一个新建的空文件,直接添加路径,同理这个路径是cmake编译时填的动态库安装路径加上/lib。再删除/usr/include/目录下的头文件文件夹opencv。再删除/usr/share/目录下的opencv文件夹。将 lib 文件夹复制到 /usr/local/lib。再删除/usr/bin/目录下的应用程序。
原创
博文更新于 2024.12.05 ·
1449 阅读 ·
10 点赞 ·
10 评论 ·
9 收藏

关于yolov8的DFL模块(pytorch以及tensorrt)

11、return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a):这是前向传播的关键操作。x.view(b, 4, self.c1, a) 的意思是将 x 的形状由 (b, c, a) 改变为 (b, 4, self.c1, a)。6、self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1)):初始化卷积层的权重。
原创
博文更新于 2024.12.04 ·
8076 阅读 ·
29 点赞 ·
5 评论 ·
48 收藏

香橙派--安装RKMPP、x264、x265、libdrm、FFmpeg(支持rkmpp)以及opencv(支持带rkmpp的ffmpeg)(适用于RK3588平台)

RKMPP:用于编解码测试,支持RK3588平台。
原创
博文更新于 2024.11.29 ·
3737 阅读 ·
10 点赞 ·
6 评论 ·
28 收藏

香橙派-orangepi-build-next/orangepi-build-next/external/config/sources/families/rockchip-rk3588.conf的解读

rsync 命令用于从源目录同步文件到目标目录。使用 -a 选项保持文件属性。使用 --chown=root:root 设置目标文件的所有者和组。使用 --exclude=etc/pulse 排除特定的目录。源目录中的文件和目录会被同步到目标目录,但排除的目录不会被同步。
原创
博文更新于 2024.11.27 ·
921 阅读 ·
21 点赞 ·
0 评论 ·
17 收藏

jetson orin系列开发版安装cuda的gpu版本的opencv的install文件

发布资源 2024.11.22 ·
tgz
加载更多