黑客思维者
码龄9年
求更新 关注
提问 私信
  • 博客:635,294
    问答:8
    635,302
    总访问量
  • 601
    原创
  • 4,583
    排名
  • 1,177
    粉丝
  • 892
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
加入CSDN时间: 2017-04-26

个人简介:专业身份:我长期深耕于行业数字化与AIoT领域,身兼人工智能应用架构师与工业控制系统(ICS/SCADA/PLC)安全专家二职。 内容分享:希望将过去几十年为物联网世界“添砖加瓦”的实战经验与深刻教训,在此与您分享。 联系方式:若您在技术实践、数字化转型或网络安全方面有任何疑问,我很乐于交流。您可以通过微信“Parcadia”联系到我。

博客简介:

这里是数字化与人工智能的 “实验场” 与 “瞭望台”

博客描述:
对技术本质的 “人话解读”; 从 0 到 1 的实践笔记和翻车现场; 对数智未来的野生猜想。
查看详细资料
个人成就
  • 获得13,309次点赞
  • 内容获得1,001次评论
  • 获得10,063次收藏
  • 代码片获得155次分享
  • 原力等级
    原力等级
    7
    原力分
    2,999
    本月获得
    642
创作历程
  • 61篇
    2026年
  • 540篇
    2025年
成就勋章
  • 入选《本周创作者榜》第28名
TA的专栏
  • AI产品经理养成
    付费
    10篇
  • 内容创作与商业变现
    付费
    7篇
  • 《Python 实战:血泪干货》
    30篇
  • 踩坑 20 年:我终于要补计算机原理这门课
    18篇
  • 青少年的Python课
  • 正则表达式
    12篇
  • 人工智能
    52篇
  • 零基础大模型微调实战教程
    20篇
  • LLM大语言模型
    75篇
  • LLM底层原理
    34篇
  • 大模型行业研究
    3篇
  • AI应用案例分析
    7篇
  • 机器学习
    105篇
  • AI绘图进阶
    1篇
  • 全球提示词宝库
    15篇
  • AI智能体
    16篇
  • 《AI进化志》
    12篇
  • 底层原理
    40篇
  • 技术小妙招
    14篇
  • 电的本质
    11篇
  • 新能源
    10篇
  • 《低压配电数字化转型实战指南
    26篇
  • 智能楼宇
    3篇
  • 可靠性设计
    7篇
  • 物联网架构
    32篇
  • IOT协议
    20篇
  • IOT Device
    7篇
  • 项目实战集
    17篇
  • 中间件系列
    18篇
  • 网络安全建设
    1篇
  • 《我是如何用C语言写工控系统的漏洞和Bug》
    12篇
  • 工控网络安全事件
    19篇
  • 工控漏洞
    9篇
  • 渗透测试
    12篇
  • C语言安全
    2篇
  • 工控安全渗透测试
    11篇
  • 安全设计
    53篇
  • 工控协议
    8篇
  • 威胁建模
    4篇
  • 法规解读
    7篇
  • 安全事件
    3篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 45

TA参与的活动 18

兴趣领域 设置
  • 人工智能
    计算机视觉人工智能深度学习语言模型
  • 云平台
    云计算
  • 网络空间安全
    安全架构
  • 行业数字化
    制造能源
创作活动更多

Claude Code 开发者创客大赛: AI 编程实战征文计划

随着 Claude Code 的爆火,AI 编程助手正在彻底改变开发者的工作流。它不仅能自动补全代码、优化算法,还能理解复杂需求并生成高质量脚本。 为探索 Claude Code 的潜力,CSDN 发起本次征文活动,邀请开发者分享实战经验、创新案例和技术思考,共同推动 AI 编程的普及与进化。 --- **创作主题**:用 Claude Code 重新定义编程效率 **创作方向**(供参考,鼓励自由发挥) **1. 效率革命:Claude Code 如何提升开发效率** - 对比传统编程 vs. Claude Code 辅助编程的耗时差异 - 实际项目中的效率提升案例(如快速生成 API、自动化脚本等) **2. 技术深挖:Claude Code 的高级用法** - 如何编写精准的 Prompt 让 Claude Code 生成更符合需求的代码 - 结合特定语言(Python/JS/Go等)的实战技巧 - 调试与优化 Claude Code 生成代码的方法 **3. 跨界融合:Claude Code 的创意应用** - 用 Claude Code 生成游戏逻辑、艺术代码(如 Processing 创意编程) - 结合低代码平台(如 Appsmith、Retool)快速搭建工具 - 在数据分析、爬虫、DevOps 等领域的落地案例 **4. 硬核挑战:用 Claude Code 完成一个完整项目** - 从零开始,仅依赖 Claude Code 开发一个小型应用(需附代码仓库和效果演示) - 记录开发过程中的思考、踩坑与解决方案 **5. 未来之辩:AI 编程的边界与伦理** - Claude Code 会取代程序员吗?职业发展的应对策略

115人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

AI大模型40年发展历程与未来统一趋势研究

本文系统梳理了1986-2026年AI大模型40年的发展历程。研究以反向传播算法为起点,划分为早期探索(1986-2005)、深度学习复兴(2006-2016)和大模型时代(2017-2026)三个阶段,详细分析了各时期的关键技术突破(如AlexNet、GAN、Transformer)和应用场景拓展。研究发现模型架构经历了从感知机到Transformer的九次认知跃迁,呈现出参数规模扩大、多模态融合和通用化的发展趋势。当前AI技术正从规模竞赛转向效率优化,在医疗、金融等领域深度应用,同时面临伦理与监管的新挑
原创
博文更新于 2026.01.23 ·
1011 阅读 ·
55 点赞 ·
21 评论 ·
28 收藏

全谱系神经网络模型发展脉络

神经网络发展经历了从单模型突破到跨架构融合的递进过程,核心遵循"线性建模→循环时序建模→注意力并行建模→大模型融合建模"的技术主线。从1943年M-P神经元模型开始,历经感知机、RNN、LSTM等关键突破,最终在2017年迎来Transformer的革命性创新。Transformer融合注意力机制和前馈网络,实现全并行计算,彻底改变了神经网络的发展方向,开启了大模型时代。后续BERT、GPT等变体进一步拓展了Transformer的应用边界,使其成为NLP、时序预测等领域的通用架构。这一
原创
博文更新于 2026.01.23 ·
589 阅读 ·
40 点赞 ·
25 评论 ·
36 收藏

从RNN到Transformer:LSTM模型的发展脉络与衍生演进

本文系统梳理了长短期记忆网络(LSTM)的发展脉络。作为RNN的改进模型,LSTM通过门控机制解决了梯度消失问题,成为处理长序列数据的里程碑。文章分析了LSTM的核心创新、优势及其变体(如GRU、Bi-LSTM),并对比了CNN/TCN和Transformer等新兴时序模型的特性。尽管Transformer在并行计算和长距离依赖方面表现优异,LSTM在小数据、低算力场景仍具优势。未来LSTM将向轻量化和融合化方向发展,与注意力机制等新技术结合,持续推动时序建模技术的进步。
原创
博文更新于 2026.01.22 ·
786 阅读 ·
49 点赞 ·
39 评论 ·
57 收藏

追本溯源:RNN的完整发展脉络(前身、演进与衍生)

本文系统梳理了循环神经网络(RNN)的发展历程。首先分析了传统前馈神经网络在处理序列数据时的局限性,并介绍了1986年Elman网络作为首个现代RNN的诞生过程。随后详细阐述了RNN的核心演进阶段,包括结构扩展(双向RNN)、训练方法改进(截断BPTT、梯度裁剪)以及实用化改造(LSTM/GRU)。文章还探讨了RNN与其他技术的融合分支,如循环卷积网络、注意力机制结合等。尽管Transformer的出现取代了RNN的主流地位,但RNN仍在低算力、小数据场景及混合模型中保持重要价值。全文通过时间轴清晰展现了R
原创
博文更新于 2026.01.22 ·
791 阅读 ·
28 点赞 ·
1 评论 ·
11 收藏

传统前馈神经网络(FNN)的前身与发展脉络

传统前馈神经网络(FNN)是深度学习的核心架构,其发展经历了从理论雏形到实用模型的演进过程。1943年M-P神经元模型首次数学定义人工神经元,1958年感知机实现权重自动调整,1960年代Adaline/Madaline形成前馈结构雏形。1986年反向传播算法和多层结构的引入使FNN正式成型,1989年万能逼近定理为其提供理论保障。尽管90年代因梯度消失等问题陷入瓶颈,但随着ReLU、批归一化等技术的出现,FNN在深度学习中焕发新生,衍生出CNN等现代架构。FNN的发展展现了从仿生模型到实用工具的完整技术演
原创
博文更新于 2026.01.21 ·
1034 阅读 ·
32 点赞 ·
2 评论 ·
32 收藏

神经网络的时序建模分支发展脉络(1960s-至今)

摘要 神经网络时序建模经历了从静态到动态、从简单到复杂的演进过程。1960年代,带延迟的感知机首次引入时序信息,但依赖人工设定步长;1980年代,霍普菲尔德网络和玻尔兹曼机分别通过反馈结构和概率建模为RNN奠定基础;1986年Elman/Jordan网络正式提出循环连接结构,实现动态时序建模;1997年双向RNN解决上下文依赖问题,LSTM通过门控机制攻克梯度消失难题;2014年GRU进一步简化结构,提升效率;最终,注意力机制的引入推动模型向Transformer演进。这一历程展现了神经网络在时序数据处理上
原创
博文更新于 2026.01.21 ·
1045 阅读 ·
50 点赞 ·
16 评论 ·
21 收藏

解码LSTM:给初学者的长短期记忆网络全景指南

学习LSTM时,请记住这不仅是掌握一个算法,更是理解序列建模的核心思想——如何让机器具备时间维度上的理解能力。即使未来新的架构不断涌现,这种思想仍然宝贵。从理解RNN的局限开始,到领悟LSTM的门控智慧,再到认识其在新时代的定位,这条学习路径将为你打开深度学习序列建模的大门。LSTM可能不再是技术前沿的代名词,但它作为连接过去与现在的桥梁,将帮助你更好地理解从循环网络到注意力机制再到现代大模型的技术演进脉络。最好的学习永远是亲手实践。
原创
博文更新于 2026.01.20 ·
938 阅读 ·
34 点赞 ·
7 评论 ·
37 收藏

从零到一:用LSTM实现时间序列预测的完整指南

LSTM气温预测实战指南:从理论到实现 本文介绍了使用长短期记忆网络(LSTM)进行气温预测的完整流程。LSTM凭借其独特的门控机制,能够有效捕捉时间序列中的长期依赖关系,克服了传统ARIMA模型在非线性预测中的局限。 文章包含四个核心部分: 理论解析:对比RNN与LSTM结构,解释遗忘门、输入门和输出门的工作原理 环境搭建:提供Python虚拟环境和必要库的安装指南 数据预处理:演示时间序列数据转换为监督学习格式的方法 模型构建:展示LSTM网络搭建、训练和预测的全过程 通过模拟气温数据示例,读者可以学习
原创
博文更新于 2026.01.20 ·
940 阅读 ·
59 点赞 ·
32 评论 ·
55 收藏

ARIMA与SARIMA:时间序列预测的经典基石

一个前提:平稳性是ARIMA建模的生命线。两大工具:ACF图(主要定q)和PACF图(主要定p)是模型识别的“罗盘”。三种操作:差分(d)去趋势,季节性差分(D)去周期,ARMA(p, q)建模平稳序列。一条铁律:模型拟合后,残差必须通过白噪声检验。一条分水岭:数据有无固定周期,是选择ARIMA与SARIMA的唯一标准。
原创
博文更新于 2026.01.19 ·
1022 阅读 ·
34 点赞 ·
5 评论 ·
22 收藏

AI时间序列预测全图谱:从ARIMA到TimeGPT的模型选型指南

电力价格预测基准测试揭示模型选型的关键:传统MSTL统计模型表现优于最新时间序列基础模型。文章分析了三类预测方法:前沿的时间序列基础模型(如TimeGPT、Chronos)、深度学习模型(如LSTM、TFT)和传统统计方法(如ARIMA、Prophet),指出每种方法的适用场景。强调模型选择应基于具体需求,如数据量、预测类型和可解释性要求,并建议先建立简单基准线。未来趋势包括预训练模型崛起、可解释性提升和概率预测普及。案例表明,电力数据因强季节性和清晰经济学特征,更适合传统统计模型。
原创
博文更新于 2026.01.19 ·
611 阅读 ·
40 点赞 ·
12 评论 ·
27 收藏

基于商品销量预测的MAPE与RMSE指标评估

本文以超市商品销量预测为例,详细阐述了MAPE(平均绝对百分比误差)和RMSE(均方根误差)双指标评估体系的构建与应用。通过10天销量数据,逐步演示了指标计算过程:MAPE=4.45%显示模型相对偏差小,RMSE≈4.67件表明极端误差影响有限。双指标互补评估验证了模型精度高且稳定性强,可支持采购和库存优化决策。文章强调实际应用中需注意指标局限性(如MAPE不适用于零值、RMSE对异常值敏感),建议扩大样本量并针对业务场景选择合适的指标组合,以全面客观地评估预测模型性能。
原创
博文更新于 2026.01.19 ·
930 阅读 ·
25 点赞 ·
1 评论 ·
8 收藏

基础模型裁剪技术指南:为微调优化预训练模型

本指南深入探讨在微调前对基础模型进行裁剪的技术,帮助您在不牺牲性能的前提下,大幅减少模型大小和计算资源需求。我们将从理论到实践,提供完整的工程化解决方案。
原创
博文更新于 2026.01.16 ·
1011 阅读 ·
48 点赞 ·
20 评论 ·
33 收藏

能源系统短期负荷预测的基础模型选型与微调实践

本文以某省级能源集团短期负荷预测需求为背景,系统阐述了高精度预测模型选型全流程。通过需求分析、候选模型筛选和性能评估,最终确定轻量版TimesNet为最优基础模型。该模型在测试集MAPE达4.2%,满足≥95%准确率要求,且具备优异的多周期捕捉能力和可解释性。针对工业负荷突变场景,提出数据增强和注意力机制优化策略,将MAPE降至4.9%。模型满足边缘部署的显存(3.2GB)和延迟(220ms)约束,并通过分层微调实现30分钟快速迭代。研究为能源系统短期负荷预测提供了可落地的技术方案。
原创
博文更新于 2026.01.16 ·
1612 阅读 ·
61 点赞 ·
40 评论 ·
61 收藏

主流深度学习框架全景对比:PyTorch、TensorFlow、JAX的发展、特性与工程落地

本文系统对比了PyTorch、TensorFlow和JAX三大深度学习框架的发展历程、核心特性和适用场景。PyTorch以动态图和灵活调试成为学术研究首选;TensorFlow凭借静态图优化和成熟部署工具链主导产业落地;JAX则通过函数式编程和XLA编译在大模型训练中展现性能优势。针对不同场景:学术研究推荐PyTorch,企业部署建议TensorFlow,大模型训练首选JAX,跨平台部署仍以TensorFlow占优。框架选择需权衡灵活性、性能和生态适配性。
原创
博文更新于 2026.01.15 ·
1445 阅读 ·
26 点赞 ·
5 评论 ·
23 收藏

深入浅出Hugging Face:从核心生态到落地应用全解析

摘要:Hugging Face构建了"模型-数据集-工具链-部署"全链路AI开发体系,包含四大核心组件:Hub(模型/数据集仓库)、Transformers(统一模型接口)、Datasets(高效数据处理)和Accelerate(分布式训练工具)。本文通过两个典型应用场景展示了其实际应用:1)使用BERT进行电商评论情感分析,包括模型微调与评估流程;2)基于量化LLaMA-2模型实现中文文本生成。Hugging Face通过标准化API和丰富资源库,显著降低了AI开发门槛,支持从NLP到
原创
博文更新于 2026.01.15 ·
994 阅读 ·
33 点赞 ·
0 评论 ·
9 收藏

模型输入特征的数量是如何确定的?

摘要: 输入特征数的确定需平衡信息完整性与计算效率。首先基于业务逻辑和数据可用性筛选原始特征,处理数据类型与编码;其次通过单特征评估、多特征冗余剔除和降维方法控制特征数量上限;然后通过模型验证选择最优特征数,避免过拟合或欠拟合;最后持续监控和迭代优化。结构化数据常采用特征重要性筛选,非结构化数据则结合降维技术。关键原则是优先特征工程,避免维度灾难,并确保样本量与特征数匹配。(149字)
原创
博文更新于 2026.01.14 ·
709 阅读 ·
19 点赞 ·
4 评论 ·
20 收藏

TimesFM:Meta推出的下一代时序预测大模型技术解析

TimesFM是Meta AI推出的时序预测基础模型,通过海量多领域数据预训练,解决了传统模型特征工程依赖、长序列建模能力不足等痛点。其核心技术包括改进的Transformer架构(稀疏自注意力、时序专用编码)、多任务预训练策略和高效微调机制。相比传统模型和其他时序大模型,TimesFM具备少样本适配、万步长序列预测和低成本部署等优势。在电力负荷预测等场景中,仅需少量数据微调即可实现MAPE≤5%的高精度预测。该模型已广泛应用于电力能源、金融风控和气象预测等领域,大幅降低了时序预测的落地门槛。
原创
博文更新于 2026.01.14 ·
962 阅读 ·
31 点赞 ·
0 评论 ·
11 收藏

大模型微调实战:电力能源预测场景的数据准备全流程解析

摘要: 本文聚焦短期区域电力负荷预测,提出基于大模型的智能化管理方案。针对电力数据强时序性、多因素耦合的特点,设计包含电力指标、气象、时间特征等多维数据集,并通过模拟生成含脏数据的样本(如缺失值、异常值)。案例以某城市核心区域为例,目标输入24小时历史数据预测未来12小时负荷,支持电网调度优化。详细介绍了数据生成方法(包括时序对齐、季节/小时波动系数、异常注入)及特征工程流程,为时序大模型(如TimeLLM、TFT)微调提供高质量数据基础,助力提升预测精度与能源配置效率。
原创
博文更新于 2026.01.14 ·
577 阅读 ·
10 点赞 ·
0 评论 ·
12 收藏

大模型微调实战:试卷批改场景手写体识别的数据准备全流程解析

本文聚焦初中数学试卷手写体识别,针对试卷场景中字体多样、内容结构化、格式固定等特点,提出完整的数据处理与模型训练方案。首先设计了包含选择题、填空题、解答题三类核心内容的样本数据规范,详细说明了图像采集要求(分辨率≥300dpi)和文本标注格式(含LaTeX公式标注)。通过Python代码实现了模拟手写体数据的生成,包含不同书写风格(工整/潦草/连笔)和10%比例的脏数据样本。该方案为后续基于视觉大模型的自动批改系统提供了高质量训练数据基础,具有标准化、可复现的特点。
原创
博文更新于 2026.01.14 ·
567 阅读 ·
13 点赞 ·
0 评论 ·
18 收藏

大模型微调实战:断路器寿命预测场景的数据准备全流程解析

本文以10kV高压断路器寿命预测为例,探讨基于大模型的工业设备智能运维数据准备方法。重点分析了断路器寿命预测所需的多维度时序监测数据(分合闸次数、触头温度等)和结构化设备属性数据(型号、安装环境等),并提供了包含脏数据的模拟样本生成代码。文章强调工业数据需满足领域专业性、时序完整性和标签准确性三大特性,为后续数据清洗和模型微调奠定基础。通过可复现的代码案例,展示了从数据设计到标准化的全流程技术细节。
原创
博文更新于 2026.01.14 ·
882 阅读 ·
39 点赞 ·
16 评论 ·
40 收藏
加载更多