B站麦麦大数据
码龄15年
求更新 关注
提问 私信
  • 博客:380,403
    视频:453
    380,856
    总访问量
  • 291
    原创
  • 6,932
    排名
  • 5,443
    粉丝
  • 66
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
加入CSDN时间: 2010-08-09

个人简介:B站:麦麦大数据,开发经验15年, 专注AI、大模型、知识图谱、可视化

博客简介:

麦麦大数据

博客描述:
专业搞定AI、智能体、算法和可视化等项目
查看详细资料
个人成就
  • 新星创作者: python技术领域
  • 获得4,210次点赞
  • 内容获得96次评论
  • 获得3,608次收藏
  • 代码片获得8,361次分享
  • 原力等级
    原力等级
    7
    原力分
    3,067
    本月获得
    36
创作历程
  • 3篇
    2026年
  • 183篇
    2025年
  • 75篇
    2024年
  • 5篇
    2023年
  • 5篇
    2022年
  • 3篇
    2021年
  • 2篇
    2019年
  • 5篇
    2018年
  • 9篇
    2014年
  • 9篇
    2012年
成就勋章
TA的专栏
  • 智能体开发
    2篇
  • MacOS 编程技巧
    3篇
  • GraphRAG
    1篇
  • 超强知识图谱项目实战
    4篇
  • 大模型实战
    11篇
  • 2026计算机毕设实战项目
    133篇
  • 2025大数据项目研发合集
    29篇
  • vue旅游数据分析系统【实战项目】
    13篇
  • 大数据环境系列
    1篇
  • docker笔记
    1篇
  • 可视化研究
    6篇
  • scrap爬虫练手
    4篇
  • 大模型
    1篇
  • scrapy汽车爬取实战
    3篇
  • scrapy微博爬虫实战项目
    6篇
  • scrapy 旅游信息爬虫【实战项目】
    8篇
  • 工具与软件安装

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 5

TA参与的活动 4

TA的推广
兴趣领域 设置
  • Python
    djangoflaskscikit-learn
  • Java
    spring boot
  • 数据结构与算法
    推荐算法
  • 大数据
    hadoopspark
  • 前端
    typescriptvue.js
  • 人工智能
    数据挖掘机器学习人工智能深度学习sklearn知识图谱pytorch
  • 软件工程
    个人开发
  • AIGC
    gpt
创作活动更多

编程达人挑战赛·第7期

作为写代码的你,是否也渴望被更多人看到?技术人员普遍有一个共性——明明技术很强,却没人知道你做了什么;花了很多时间踩坑,却没人因你少走弯路;脑子里有一堆干货,但却不懂如何有效地输出。 在如今写代码的人越来越多的时代,能够清晰表达自己思路与技术的人却少之又少。 因此,我们发起了这个【编程达人挑战赛】——帮助你将代码变成作品,将技术转化为真正的价值,同时激励更多的人坚持写作与分享。 注:活动细则介绍请看此贴:[https://bbs.csdn.net/topics/619791811](https://bbs.csdn.net/topics/619791811)。

83人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

F052pro 基于spark推荐的中医古籍知识图谱可视化推荐系统|spark mlib|hadoop|docker集群

本文介绍了一个基于Vue+Flask+Spark+Hadoop+Neo4j+Docker的中医古籍知识图谱可视化推荐系统。系统通过大数据与图数据库技术实现中医病症知识的智能挖掘与个性化推荐,主要功能包括用户管理、个性化推荐、知识图谱可视化、统计分析等。采用前后端分离架构,前端使用Vue.js+Vuetify,后端基于Flask框架,数据存储采用MySQL+Neo4j+HDFS,推荐算法通过Spark MLlib实现。系统特色在于结合知识图谱技术与推荐算法,提供中医古籍内容的智能化分析与可视化展示。
原创
博文更新于 2026.01.09 ·
662 阅读 ·
23 点赞 ·
0 评论 ·
19 收藏

J009 美食推荐可视化大数据系统vue+springboot

本文介绍了一个基于Vue+SpringBoot+MySQL的美食推荐与大数据可视化分析系统。系统采用前后端分离架构,核心功能包括用户登录注册、美食推荐(基于UserCF+ItemCF协同过滤算法)、多维数据可视化分析(ECharts图表)、会员充值(阿里沙箱支付模拟)和后台管理等功能。系统特色在于融合推荐算法与可视化技术,通过身份证识别和支付系统实现完整的会员体系,为个人用户提供个性化美食推荐,同时为管理员提供数据分析和运营管理平台。文章详细说明了系统架构、功能模块及技术实现,并附有系统界面截图展示各功能效
原创
博文更新于 2026.01.09 ·
875 阅读 ·
19 点赞 ·
0 评论 ·
21 收藏

F069 vue+flask基于Apriori关联规则的求职推荐系统

本文介绍了一个基于Vue+Flask+MySQL的智能求职推荐系统,主要包含以下核心功能: 职位智能推荐:采用Apriori关联规则与内容相似度相结合的混合推荐算法,通过用户历史行为分析生成个性化推荐。 2.薪资预测功能:集成决策树和随机森林两种机器学习模型,支持用户根据城市、学历等维度预测薪资范围。 3.数据可视化分析:利用ECharts实现职位分布热力图、薪资直方图等可视化展示,帮助用户把握行业趋势。 4.完整用户体系:包含登录注册、收藏管理、个人信息设置等功能模块,支持用户个性化需求。 5.管理员功能
原创
博文更新于 2026.01.04 ·
1019 阅读 ·
28 点赞 ·
0 评论 ·
8 收藏

F068 vue+flask 非遗文化遗产图谱可视化系统

本文介绍了一个非遗项目管理系统,具备知识图谱可视化、关键词分析、新闻互动、项目检索等功能。系统采用分权限设计,包含用户和管理员角色。核心功能包括:非遗数据导入与知识图谱构建(MySQL+Neo4j)、项目搜索与查询、新闻资讯管理(含点赞评论)、用户信息管理、数据可视化分析(词云、关键词提取)以及基于阿里云DataV的非遗地图展示。管理员可管理项目、新闻和用户信息。系统通过Python实现后端接口,前端提供交互式可视化界面,完整实现了非遗文化数字化展示与管理需求。
原创
博文更新于 2025.12.31 ·
544 阅读 ·
7 点赞 ·
0 评论 ·
17 收藏

F067 中医养生知识图谱健康问答系统+膳食食疗系统

F067中医养生知识图谱健康问答系统是一个基于Vue+Flask+Neo4j技术栈开发的智能健康管理平台。系统采用B/S架构,实现用户管理、智能问答、知识图谱可视化、药材搜索、养生资讯、数据分析等功能。核心特色包括:1)结合Neo4j图数据库实现中医知识图谱的存储与查询;2)智能问答模块支持多类型中医问题解析,未匹配时调用大模型生成专业回答;3)D3.js实现知识图谱的交互式可视化展示;4)提供药材药方搜索、养生资讯社区等实用功能。系统通过前后端分离设计,为用户提供便捷的中医养生知识服务,同时为管理员提供完
原创
博文更新于 2025.12.31 ·
939 阅读 ·
24 点赞 ·
0 评论 ·
31 收藏

F069-基于规则求职推荐系统Apriori关联规则+

发布视频 2025.12.31

F067-中医养生问答科普系统

发布视频 2025.12.31

F068-非遗-水印

发布视频 2025.12.31

F066 vue+flask中医草药靶点知识图谱智能问答系统|中医中药医学知识图谱

本文介绍了一个基于Vue+Flask+Neo4j的中药知识图谱系统,该系统实现了中药数据的可视化分析与智能问答功能。系统采用B/S架构,前端使用Vue.js+Element UI,后端采用Flask框架,数据存储使用MySQL和Neo4j图数据库。核心功能包括药方/药材搜索、数据可视化大屏、关键词分析、知识图谱查询和智能问答。系统通过协同过滤算法实现个性化推荐,利用LTP进行语义分析,支持症状-病症-药方-药材的多维关联查询。文章详细展示了各功能模块的界面效果和部分核心代码实现。
原创
博文更新于 2025.12.30 ·
747 阅读 ·
24 点赞 ·
0 评论 ·
30 收藏

F066-中药草药成分靶点知识图谱智能问答系统

发布视频 2025.12.30

F064 vue+flask知识图谱在线学习系统

本文介绍了一个基于知识图谱的在线学习系统,采用Vue+Flask+MySQL+Neo4j技术栈实现。系统主要功能包括课程知识图谱构建与可视化、在线课程学习、习题练习以及学习数据分析。前端使用Vue.js和D3.js实现交互式知识图谱展示,后端通过Flask构建RESTful API,MySQL存储结构化数据,Neo4j管理知识图谱关系。系统特色功能包含AI学习伴侣(集成DeepSeek)、数据大屏分析和多角色权限管理。核心算法涉及Py2neo操作Neo4j构建知识图谱节点关系,以及D3.js实现图谱可视化交
原创
博文更新于 2025.12.30 ·
1307 阅读 ·
33 点赞 ·
0 评论 ·
9 收藏

F064-基于知识学习系统python-水印

发布视频 2025.12.29

F063 基于知识图谱的中成药推荐与养生知识平台设计与实现

本文介绍了一个基于知识图谱的中成药推荐与养生知识平台,采用Vue+Flask+MySQL+Neo4j技术栈开发。系统包含用户端和管理员端两大模块:用户端提供智能推荐、在线开药、养生知识浏览等功能,采用语义模型实现精准推荐;管理员端负责知识图谱构建、数据采集、药库管理等。系统通过Neo4j存储药物关系数据,MySQL管理结构化信息,并实现了数据可视化分析功能。该平台为中成药推荐和养生知识传播提供了智能化解决方案。
原创
博文更新于 2025.12.29 ·
857 阅读 ·
25 点赞 ·
0 评论 ·
20 收藏

F063知识图谱中成药推荐与知识科普平台

发布视频 2025.12.29

F062 vue+flask 知识图谱抑郁症心理健康问答系统|neo4j

本文介绍了一个基于Vue+Django的抑郁症知识图谱与问答系统。系统采用Vue.js、Flask、MySQL和Neo4j等技术栈,实现了抑郁症知识图谱构建、模糊检索、智能问答等功能。知识图谱涵盖抑郁症症状、发病原理、诊断方法及饮食建议等实体关系,支持多种问答方式。系统还包含用户管理模块,提供登录注册、个人信息修改等服务。通过可视化图谱展示和自然语言处理技术,帮助用户快速获取抑郁症相关知识,为解决这一社会问题提供技术支持。
原创
博文更新于 2025.12.29 ·
728 阅读 ·
17 点赞 ·
0 评论 ·
26 收藏

F061 vue+flask基于大模型的古诗词问答与推荐系统

本文介绍了一款融合AI技术的诗词推荐与可视化系统。该系统采用Vue+Flask+MySQL+LLM技术架构,实现了诗词智能推荐、AI写诗、数据可视化等核心功能。通过混合推荐算法(内容推荐+协同过滤+冷启动)实现个性化诗词推荐,支持用户点赞互动;对接硅基流动模型实现智能写诗;利用ECharts展示诗词的朝代分布与主题分析。系统还包含用户管理、登录注册、诗词检索等基础功能,为传统文化数字化提供了创新解决方案。
原创
博文更新于 2025.12.26 ·
532 阅读 ·
20 点赞 ·
0 评论 ·
22 收藏

F060 基于BERTvue+flask电影评论情感分析系统

摘要:本文介绍了一个基于BERT+Vue+Flask的电影评论情感分析系统,采用前后端分离架构,整合了自然语言处理、协同过滤推荐和大数据可视化技术。系统核心功能包括电影信息管理、情感三分类分析(积极/中立/消极)、个性化推荐(UserCF/ItemCF)和多维度数据统计(词云、柱状图等)。通过BERT模型提升情感分析准确率,并实现用户权限分级管理。系统采用Vue.js+Element UI构建响应式前端,Flask提供RESTful API服务,MySQL存储结构化数据,为电影行业分析和用户选片提供数据支持
原创
博文更新于 2025.12.26 ·
974 阅读 ·
9 点赞 ·
0 评论 ·
21 收藏

F058 红黑树文件检索系统

本文介绍了一个基于Vue+Flask+MySQL的红黑树文件检索系统。系统采用B/S架构,包含用户管理、文件管理、高效检索、可视化分析和系统管理五大模块。通过红黑树数据结构实现O(log n)时间复杂度的文件检索,支持文件上传、增删改查等操作,并提供词频分析、文件类型统计等可视化功能。系统采用前后端分离设计,前端使用Vue.js+ElementUI,后端基于Flask框架实现RESTful API,MySQL存储数据并保持与红黑树结构的一致性。
原创
博文更新于 2025.12.25 ·
1431 阅读 ·
35 点赞 ·
0 评论 ·
18 收藏

F059 vue+flask酒店对比系统

本文介绍了一个基于Vue+Flask架构的酒店价格对比可视化系统(F059)。该系统实现了携程和同程网的酒店价格对比功能,包含价格排行、酒店管理、价格对比、用户管理等模块。系统采用MySQL数据库存储数据,核心算法包括JWT认证、数据爬取、价格对比、数据可视化等。文中展示了系统架构图、功能界面截图以及核心代码示例(包括Flask后端API和MySQL表结构)。该系统可帮助用户直观比较不同平台的酒店价格差异,为住宿选择提供决策参考。
原创
博文更新于 2025.12.25 ·
1053 阅读 ·
13 点赞 ·
0 评论 ·
22 收藏

F061 python推荐算法古诗词问答系统大模型写诗可视化

发布视频 2025.12.25
加载更多