墨 禹
码龄7年
求更新 关注
提问 私信
  • 博客:2,399,271
    社区:183
    2,399,454
    总访问量
  • 787
    原创
  • 6,947
    排名
  • 4,439
    粉丝
  • 34
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2018-10-17

个人简介:一个追求有道有术的非典型程序员

博客简介:

记录知识、锤炼自我

博客描述:
Spring、Spring Boot、Spring Cloud、DevOps、Redis、Mysql、微服务、云原生、大数据.....你想要的这里都有
查看详细资料
个人成就
  • 新星创作者: Java技术领域
  • 获得4,504次点赞
  • 内容获得769次评论
  • 获得7,258次收藏
  • 代码片获得37,368次分享
  • 原力等级
    原力等级
    9
    原力分
    10,612
    本月获得
    15
创作历程
  • 45篇
    2025年
  • 146篇
    2024年
  • 201篇
    2023年
  • 95篇
    2022年
  • 216篇
    2021年
  • 95篇
    2020年
成就勋章
TA的专栏
  • Spring Security 6.x
    付费
    73篇
  • Camunda 7.x
    付费
    68篇
  • Spring Boot 3.x
    付费
    51篇
  • Sharding Sphere 5.x
    付费
    30篇
  • NumPy 2.x 完全指南
    45篇
  • OpenCV 4.x 实践指南
  • Seata 2.x
    32篇
  • Jackson 2.x
    31篇
  • Nacos 2.x
    41篇
  • Redis 7.x
    38篇
  • 在线支付【微信&支付宝】
    24篇
  • 编程译界
    2篇
  • 微服务系列
  • RabbitMQ
    18篇
  • Sentinel
    12篇
  • Dubbo 3.0
    7篇
  • Spring Cloud Open Feign
    24篇
  • Spring Cloud Gateway
    14篇
  • Minio
    19篇
  • SkyWalking
    6篇
  • zipkin
    3篇
  • 面试系列
    5篇
  • JAVA系列
  • 并发编程
    4篇
  • Gradle
    8篇
  • MapStruct系列
    10篇
  • Spring Framework系列
    12篇
  • DevOps系列
  • 环境部署
    3篇
  • 运维监控
    22篇
  • Jenkins
    9篇
  • Linux
    3篇
  • Kubernetes
    29篇
  • spring-boot
  • Thymeleaf
    8篇
  • Spring MVC
    16篇
  • Spring Boot Admin
    6篇
  • 数据
  • Elasticsearch
    2篇
  • Mariadb
    8篇
  • JSqlParser
    5篇
  • Mybatis系列
    46篇
  • 问题解决
    7篇
  • 大数据系列
  • Hive
    5篇
  • Zookeeper
    1篇
  • Scala
    10篇
  • Hadoop
    11篇
  • Hbase
    5篇
  • Spark
    3篇

TA关注的专栏 7

TA关注的收藏夹 0

TA关注的社区 5

TA参与的活动 5

TA的推广
兴趣领域 设置
  • Python
    pythonnumpypandasmatplotlib
  • Java
    javaspringspring bootspring cloudmybatis
  • 云原生
    dockerkubernetes
  • 人工智能
    计算机视觉机器学习人工智能深度学习神经网络图像处理
创作活动更多

Claude Code 开发者创客大赛: AI 编程实战征文计划

随着 Claude Code 的爆火,AI 编程助手正在彻底改变开发者的工作流。它不仅能自动补全代码、优化算法,还能理解复杂需求并生成高质量脚本。 为探索 Claude Code 的潜力,CSDN 发起本次征文活动,邀请开发者分享实战经验、创新案例和技术思考,共同推动 AI 编程的普及与进化。 --- **创作主题**:用 Claude Code 重新定义编程效率 **创作方向**(供参考,鼓励自由发挥) **1. 效率革命:Claude Code 如何提升开发效率** - 对比传统编程 vs. Claude Code 辅助编程的耗时差异 - 实际项目中的效率提升案例(如快速生成 API、自动化脚本等) **2. 技术深挖:Claude Code 的高级用法** - 如何编写精准的 Prompt 让 Claude Code 生成更符合需求的代码 - 结合特定语言(Python/JS/Go等)的实战技巧 - 调试与优化 Claude Code 生成代码的方法 **3. 跨界融合:Claude Code 的创意应用** - 用 Claude Code 生成游戏逻辑、艺术代码(如 Processing 创意编程) - 结合低代码平台(如 Appsmith、Retool)快速搭建工具 - 在数据分析、爬虫、DevOps 等领域的落地案例 **4. 硬核挑战:用 Claude Code 完成一个完整项目** - 从零开始,仅依赖 Claude Code 开发一个小型应用(需附代码仓库和效果演示) - 记录开发过程中的思考、踩坑与解决方案 **5. 未来之辩:AI 编程的边界与伦理** - Claude Code 会取代程序员吗?职业发展的应对策略

64人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 代码仓
  • 问答
  • 视频
更多
  • 最近

  • 文章

  • 专栏

  • 资源

  • 代码仓

  • 问答

  • 视频

  • 社区

  • 课程

  • 关注/订阅/互动

  • 收藏

搜索 取消

NumPy 2.x 完全指南【四十五】离散傅里叶变换函数

傅里叶变换的基本思想首先由傅里叶提出,所以以其名字来命名以示纪念。从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
原创
博文更新于 2025.11.18 ·
1124 阅读 ·
12 点赞 ·
0 评论 ·
11 收藏

NumPy 2.x 完全指南【四十四】深度学习中的张量

张量 (Tensor)的表现形式和应用方式会因研究领域和对象的不同而产生差异。不同于数学、物理中复杂的理论和公式,深度学习中张量剥离了复杂的变换规则与几何意义,主要应用于数据的高效表示与计算,可理解为多维数组。具有任意的维度,如一维、二维、三维等。在 Numpy 中,张量就是使用 numpy.ndarray(N维数组)对象表示。————————————————版权声明:本文为CSDN博主「墨 禹」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https:/
原创
博文更新于 2025.11.18 ·
635 阅读 ·
21 点赞 ·
0 评论 ·
22 收藏

NumPy 2.x 完全指南【四十三】线性代数之矩阵运算

说起矩阵(Matrix),很多人肯定会想到一部电影《黑客帝国》(The Matrix),如果有个戴墨镜的神秘的黑衣人,告诉你所生活的世界并不是真实的,而是由 0 和 1 组成的一个计算机程序(虚拟矩阵空间)。吞下蓝色药丸,你会忘记刚刚发生的一切,继续生活在虚幻中,吞下红色药丸,你会来到残酷的真实世界,你会怎么选?
原创
博文更新于 2025.11.18 ·
1055 阅读 ·
16 点赞 ·
0 评论 ·
22 收藏

NumPy 2.x 完全指南【四十二】线性代数之向量运算

在数学中向量是重要和基本的概念之一,既是代数研究对象,也是几何研究对象,是沟通几何与代数的桥梁。一般在高二数学中,会学习平面向量(二维空间)或者空间向量(三维空间),在数学教材中的定义是,把既有大小又有方向的量叫做向量,只有大小没有方向的量称为数量。
原创
博文更新于 2025.10.30 ·
1095 阅读 ·
17 点赞 ·
0 评论 ·
10 收藏

NumPy 2.x 完全指南【四十一】线性代数函数介绍

线性代数是数学中的一个分支,研究的是向量、矩阵以及线性方程组的性质和运算。它是高等数学中的基础工具之一,尤其在数据处理、优化算法、信号处理、图像识别等方面起着核心作用。在机器学习、计算机科学、物理学、经济学等多个领域都有广泛的应用。
原创
博文更新于 2025.10.30 ·
964 阅读 ·
30 点赞 ·
0 评论 ·
17 收藏

NumPy 2.x 完全指南【四十】统计函数

顺序统计主要处理与数据排序和分布位置相关的计算,用于分析数据的范围和分布情况。
原创
博文更新于 2025.09.16 ·
998 阅读 ·
20 点赞 ·
0 评论 ·
24 收藏

NumPy 2.x 完全指南【三十九】概率分布函数

numpy.random.Generator 支持多种概率分布函数,用于从各种分布中抽取样本。
原创
博文更新于 2025.09.16 ·
831 阅读 ·
25 点赞 ·
0 评论 ·
24 收藏

NumPy 2.x 完全指南【三十八】伪随机数生成器

numpy.random 模块是 NumPy 库中用于生成随机数的核心模块,它实现了伪随机数生成器(Pseudorandom Number Generators, 简称 PRNGs 或 RNGs)。这些生成器能够从各种概率分布中抽取样本,是科学计算、数据分析和机器学习中不可或缺的工具。
原创
博文更新于 2025.09.15 ·
1196 阅读 ·
19 点赞 ·
0 评论 ·
13 收藏

NumPy 2.x 完全指南【三十七】集合操作、排序函数

NumPy 提供了多个用于处理数组中集合操作的函数,这些函数能够高效地执行诸如去重、交集、并集、差集等常见的数学集合运算。
原创
博文更新于 2025.09.15 ·
916 阅读 ·
24 点赞 ·
0 评论 ·
25 收藏

NumPy 2.x 完全指南【三十六】查询、聚合函数

聚合函数(Aggregate Functions)是数据库、数据分析和编程中用于对数据进行汇总、计算、统计等操作的函数。它们通常用于将多个数据值汇总成单一的值,这个值代表了数据集的某种统计特征或总结。聚合函数在数据分析、报告生成、统计分析等场景中广泛使用。
原创
博文更新于 2025.09.10 ·
891 阅读 ·
15 点赞 ·
0 评论 ·
12 收藏

NumPy 2.x 完全指南【三十五】通用函数(ufunc)之自定义通用函数

在 NumPy 中,通用函数是 numpy.ufunc 类的实例,这意味着许多你熟悉的函数(如 np.add, np.multiply, np.sin 等)虽然是函数,但实际上是某个“类”的“对象”。在调用通用函数时,由 NumPy 内部通过编译的 C 代码实现和初始化 ufunc 实例。
原创
博文更新于 2025.09.10 ·
865 阅读 ·
15 点赞 ·
0 评论 ·
8 收藏

NumPy 2.x 完全指南【三十四】通用函数(ufunc)之比较、逻辑运算、极值、位操作、浮点函数

浮点函数专门设计用来高效、正确地处理浮点数数组及其特有的运算问题。
原创
博文更新于 2025.09.04 ·
1098 阅读 ·
7 点赞 ·
0 评论 ·
26 收藏

NumPy 2.x 完全指南【三十三】通用函数(ufunc)之三角、双曲函数

通用函数(简称 ufunc)是一种能对数组中的每个元素进行高效逐元素操作的函数,支持数组广播、类型转换以及若干其他标准特性。
原创
博文更新于 2025.09.04 ·
1012 阅读 ·
27 点赞 ·
0 评论 ·
10 收藏

NumPy 2.x 完全指南【三十二】通用函数(ufunc)之数学运算函数

通用函数(简称 ufunc)是一种能对数组中的每个元素进行高效逐元素操作的函数,支持数组广播、类型转换以及若干其他标准特性。
原创
博文更新于 2025.08.28 ·
1410 阅读 ·
21 点赞 ·
0 评论 ·
14 收藏

NumPy 2.x 完全指南【三十一】布尔数组索引

定义:通过布尔掩码(True/False值)选择满足条件的元素。
原创
博文更新于 2025.08.28 ·
1065 阅读 ·
7 点赞 ·
0 评论 ·
11 收藏

NumPy 2.x 完全指南【三十】整数数组索引

在 NumPy 中,高级索引允许通过非连续的、复杂的规则选择数组中的元素。
原创
博文更新于 2025.07.29 ·
1231 阅读 ·
34 点赞 ·
0 评论 ·
13 收藏

NumPy 2.x 完全指南【二十九】数组迭代器

NumPy 数组支持迭代器协议,如果使用 Python for 循环进行迭代时,实际上是在数组的第一个维度(轴 0 )上进行迭代。
原创
博文更新于 2025.07.29 ·
719 阅读 ·
18 点赞 ·
0 评论 ·
18 收藏

NumPy 2.x 完全指南【二十八】日期时间类型

从 NumPy 1.7 开始,Numpy 原生支持日期时间数据类型,该数据类型称为 datetime64,之所以命名为 datetime64 是因为 datetime 已被 Python 标准库占用。
原创
博文更新于 2025.07.14 ·
1267 阅读 ·
23 点赞 ·
0 评论 ·
9 收藏

NumPy 2.x 完全指南【二十七】字符串和字节数组

在 NumPy 2.0 之前,固定宽度的 numpy.str_、numpy.bytes_ 和 numpy.void 数据类型是 NumPy 中处理字符串和字节串的唯一类型。
原创
博文更新于 2025.07.14 ·
1151 阅读 ·
32 点赞 ·
0 评论 ·
11 收藏

NumPy 2.x 完全指南【二十六】掩码数组

在许多情况下,数据集可能不完整或受到无效数据的污染。例如,传感器可能未能记录数据,或者记录了无效的值。numpy.ma 模块通过引入掩码数组(MaskedArray)提供了一个便捷的解决方案,是一个支持带有掩码的数组。
原创
博文更新于 2025.06.11 ·
1455 阅读 ·
13 点赞 ·
0 评论 ·
9 收藏
加载更多