AIDD Learning
码龄8年
求更新 关注
提问 私信
  • 博客:93,376
    93,376
    总访问量
  • 79
    原创
  • 459
    粉丝
  • 109
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江西省
加入CSDN时间: 2017-08-18

个人简介:聚焦全球人工智能与药物研发领域进展,探索生物医药行业创新。

博客简介:

qq_39889473的博客

查看详细资料
个人成就
  • 获得492次点赞
  • 内容获得14次评论
  • 获得502次收藏
  • 代码片获得1,157次分享
  • 博客总排名31,914名
  • 原力等级
    原力等级
    4
    原力分
    760
    本月获得
    1
创作历程
  • 14篇
    2025年
  • 27篇
    2024年
  • 2篇
    2023年
  • 9篇
    2022年
  • 12篇
    2021年
  • 7篇
    2020年
  • 11篇
    2019年
成就勋章
TA的专栏
  • RDKit
    付费
    14篇
  • Python绘图
    付费
    14篇
  • 分子对接和动力学模拟
    1篇
  • Python在AIDD领域中的应用
    10篇
  • 书籍推荐
    2篇
  • 跟着Nature学绘图
    1篇
  • 新书推荐
    1篇
  • 机器学习
    16篇
  • 笔记
    3篇
  • 数据科学
    1篇
  • Pandas数据分析
    8篇
  • 特征工程
    2篇
  • spark
    5篇
  • linux
    2篇
  • 大数据
    8篇
  • PHP
    1篇
  • centos
    1篇
  • 数据结构
    1篇
  • 算法
    10篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 11

TA参与的活动 1

兴趣领域 设置
  • Python
    python
  • 人工智能
    深度学习自然语言处理知识图谱语言模型scikit-learn迁移学习
创作活动更多

Claude Code 开发者创客大赛: AI 编程实战征文计划

随着 Claude Code 的爆火,AI 编程助手正在彻底改变开发者的工作流。它不仅能自动补全代码、优化算法,还能理解复杂需求并生成高质量脚本。 为探索 Claude Code 的潜力,CSDN 发起本次征文活动,邀请开发者分享实战经验、创新案例和技术思考,共同推动 AI 编程的普及与进化。 --- **创作主题**:用 Claude Code 重新定义编程效率 **创作方向**(供参考,鼓励自由发挥) **1. 效率革命:Claude Code 如何提升开发效率** - 对比传统编程 vs. Claude Code 辅助编程的耗时差异 - 实际项目中的效率提升案例(如快速生成 API、自动化脚本等) **2. 技术深挖:Claude Code 的高级用法** - 如何编写精准的 Prompt 让 Claude Code 生成更符合需求的代码 - 结合特定语言(Python/JS/Go等)的实战技巧 - 调试与优化 Claude Code 生成代码的方法 **3. 跨界融合:Claude Code 的创意应用** - 用 Claude Code 生成游戏逻辑、艺术代码(如 Processing 创意编程) - 结合低代码平台(如 Appsmith、Retool)快速搭建工具 - 在数据分析、爬虫、DevOps 等领域的落地案例 **4. 硬核挑战:用 Claude Code 完成一个完整项目** - 从零开始,仅依赖 Claude Code 开发一个小型应用(需附代码仓库和效果演示) - 记录开发过程中的思考、踩坑与解决方案 **5. 未来之辩:AI 编程的边界与伦理** - Claude Code 会取代程序员吗?职业发展的应对策略

64人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

第9期:玩转分子运动的“黑匣子”:MDAnalysis与轨迹分析实战

分子动力学模拟(MD)就像一场原子级别的“电影”,但问题来了:这场电影动辄几十 GB,上千万帧,靠肉眼根本看不过来。于是,我们需要一把 显微放大镜 + 数据统计工具,来理解分子在模拟中的运动模式。通过 MDAnalysis 和 MDTraj,我们把“原子级大片”浓缩成 关键指标 和 统计结论。这些分析可以帮助我们理解模拟是否可信、蛋白构象变化路径,以及配体结合口袋是否稳定。假设你有 protein.pdb(拓扑文件)和 traj.dcd(轨迹文件)。哪些残基稳定、哪些灵活?谁在和谁“暧昧不清”?
原创
博文更新于 2025.10.23 ·
332 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

从代码看结构:用Biopython和可视化工具探索分子世界!

本期你学到了:✅ 如何用Biopython读取和操作PDB结构✅ 如何用对结构进行三维可视化✅ 如何将编程与结构生物学结合,观察“生命的拼图”如果你觉得这篇文章对你有帮助,欢迎,也别忘了关注我们,获取更多AIDD干货!
原创
博文更新于 2025.08.29 ·
174 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

序列数据处理:蛋白质序列的数值化表示方法全解

本篇文章将全面介绍蛋白质序列的数据处理流程和主流的数值化表示方法,包括从原始FASTA数据处理开始,到多种主流的编码技术如 one-hot、k-mer、ProtVec,再到近年来大热的 transformer embedding 表示方法。ProtVec 是受 Word2Vec 启发的一种蛋白质嵌入表示方法,将 3-mer 看作“单词”,再用 skip-gram 模型训练得到 100 维向量。为例,其在数百万蛋白质序列上预训练模型,可输出每个氨基酸的上下文嵌入向量(1280维或更高)。
原创
博文更新于 2025.08.27 ·
1068 阅读 ·
17 点赞 ·
0 评论 ·
8 收藏

书籍推荐|《Bioinformatics with Python Cookbook》360页

本书以Python生态中的现代库为核心,结合真实案例,系统讲解如何解决基因组学、测序数据分析、蛋白质组学等领域的复杂问题。第三版更新了最新工具与技术,适合具备中级Python编程能力及基础生物学知识的读者。:具备Python基础的生物信息学研究者、希望拓展生物领域的数据科学家,以及需要构建高效分析管道的开发者。《Bioinformatics with Python Cookbook》第三版由。撰写,Packt Publishing出版,是生物信息学领域的一本。本人会在24小时内回复您获取资料。
原创
博文更新于 2025.08.24 ·
292 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

使用Pandas进行缺失值处理和异常值检测——实战指南

异常值通常是指与其他数据相比显著偏离的数据点。它们可能由测量错误、数据录入错误或真实的罕见现象引起。检测并处理异常值对于避免模型误判十分关键。在数据预处理中,去除缺失值和检测异常值是确保数据质量的关键步骤。通过Pandas提供的方法,我们可以快速识别并处理缺失数据;利用IQR和Z-score方法,我们可以检测并剔除明显偏离的数据点,从而为后续分析和建模打下坚实的基础。掌握这些技巧不仅能提高数据分析的准确性,也有助于构建更加稳健的分析流程。
原创
博文更新于 2025.08.23 ·
1448 阅读 ·
20 点赞 ·
0 评论 ·
14 收藏

数据集划分与采样策略:构建更稳健的药物预测模型

例如,有活性分子可能只占数据集的5%,而其余95%为非活性分子。✅ 建议:在药物建模任务中,优先采用 Scaffold-based split,尤其是在论文或项目报告中,需要对模型的泛化能力有明确评估时。科学合理地处理训练、验证、测试数据,能够有效提升模型的泛化能力,并避免过拟合或评估偏差。📌 示例:你训练的模型可能在测试集上达到95% AUC,但换一个数据集,AUC 直接掉到70%,因为它只是“记住了”结构而已。可能会造成“信息泄露”,单纯的随机划分可能会让测试集与训练集之间高度相似,导致模型测试性能。
原创
博文更新于 2025.08.23 ·
1079 阅读 ·
21 点赞 ·
0 评论 ·
28 收藏

数据融合与清洗的核心要义:标签对齐与特征过滤

常见的情况是我们从两个来源分别获得了结构信息(如 SMILES 字符串)和活性数据(如某药物对特定靶标的 IC50 值)。在完成分子特征提取与活性数据标准化之后,我们就进入了数据融合与清洗的关键环节:对齐标签与特征,并过滤缺失或无效的样本。的数据条目,才能被作为模型输入。最终的结果应为一个干净的数据框(DataFrame),每一行是一个可训练样本。缺失 IC50/logIC50 等活性数据(说明无法进行监督建模)已标准化的活性标签(如 logIC50 值、活/非活分类)1 数据合并:结构与活性信息的连接。
原创
博文更新于 2025.08.22 ·
369 阅读 ·
5 点赞 ·
0 评论 ·
1 收藏

活性数据处理与标准化

由于这些数据常来源于不同实验条件与测定平台,其数值范围、单位、尺度不尽相同,若不进行标准化处理,将严重影响后续的机器学习模型训练效果与预测可靠性。本章将介绍如何对这些数据进行转换、归一化,并完成建模所需的标签划分。通过对 IC50 等数据进行单位归一化、对数转换与标签化处理,可以将异构实验结果整合为统一建模格式,为机器学习与深度学习打下坚实基础。注意: 由于 IC50 值的尺度差异较大,直接使用原始数值会造成模型训练偏差,因此需要将其转换为对数尺度(如 pIC50 = -log10(IC50 [M]))。
原创
博文更新于 2025.08.21 ·
525 阅读 ·
6 点赞 ·
0 评论 ·
12 收藏

书籍推荐|《Computational Methods for Rational Drug Design》574页

Computational Methods for Rational Drug Design》涵盖药物设计的工具和技术,并将其应用于小分子疗法的发现,详细介绍方法论和实际应用,并探讨人工智能/机器学习等技术以及未知受体结构的药物设计所面临的挑战。Nisha Kumari Singh、Nigam Jyoti Maiti、Manshi Mishra、Shantanu Raj、Gourav Rakshit、Rahul Ghosh 和 Sharanya Roy。
原创
博文更新于 2025.08.20 ·
731 阅读 ·
12 点赞 ·
0 评论 ·
14 收藏

核心技能篇:从分子到模型的完整数据链路

分子数据清洗是 AIDD 流程中最容易被忽视、但最具价值的环节之一。通过格式转换、SMILES 标准化、缺失与异常值处理,我们可以显著提升模型的稳定性和泛化能力。牢记:干净、规范、可解释的数据,是科学建模的第一步。
原创
博文更新于 2025.08.19 ·
938 阅读 ·
21 点赞 ·
0 评论 ·
8 收藏

AI 药物发现:化学分子到机器学习数值特征的转化——打通“化学空间”与“模型空间”关键路径

AI药物发现中的关键环节是将化学分子转化为机器学习可处理的数值特征。文章介绍了三种核心方法:1)通过RDKit计算分子描述符(如LogP、分子量等);2)生成分子指纹(Morgan、MACCS等)进行结构特征编码;3)构建分子图结构(原子特征矩阵和邻接矩阵)为图神经网络建模做准备。每种方法均提供Python代码示例和应用建议,包括批量处理技巧和模型适配方案,帮助打通"化学空间"与"模型空间"的转化路径,为AI药物发现奠定数据基础。
原创
博文更新于 2025.08.19 ·
379 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

标题: [特殊字符] 趣味MLP初体验:用深度神经网络「秒」预测分子水溶性!

多层感知机由“输入层 → 多个隐藏层 → 输出层”组成,层间全连接,使用非线性激活函数捕捉复杂映射。
原创
博文更新于 2025.06.08 ·
330 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

AIDD研究者必看:Python环境与工具大揭秘,RDKit、DeepChem等库安装与介绍!

在药物化学/生物信息领域,常用Anaconda(或Miniconda)管理Python开发环境和安装相关库。Anaconda集成了Conda包管理器,安装后可以创建隔离的Python环境。(创建名为aidd的环境),然后执行激活环境。注意:Windows旧版Conda环境激活命令为,新版Anaconda使用即可。完成环境创建后,即可使用或安装所需Python包。
原创
博文更新于 2025.04.28 ·
1195 阅读 ·
23 点赞 ·
0 评论 ·
12 收藏

Python--跟着Nature学绘图--散点图与气泡图

Figure1 本系列部分图【限时抢位!生物信息学绘图王者班,199元解锁Nature级可视化秘籍】🔥 独家福利!扫码即入「生信精英可视化特训营」🔥⚠️ 警告:本社群仅限前200名!🎁 【转发立减攻略】1️⃣ 转发本文章→发朋友圈配文:"发现个宝藏课程!Python生信绘图全集+Nature模板库+终身答疑,原价199元,转发助力只需149!扫码抢位↓"2️⃣ 截图发送至客服微信→立减50元!(悄悄说:集满10赞再减10元,149元直降至139元!
原创
博文更新于 2025.04.14 ·
151 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

基于RDKit的分子描述符分析与特征选择:以溶解度预测为例

然而,要建立有效的QSAR模型,首先需要通过合适的分子描述符(如分子指纹、拓扑特征、电子特征等)来表征分子结构。我们首先加载一个包含溶解度数据的CSV文件,并通过RDKit的SMILES标准化功能确保每个分子都有唯一的、标准化的SMILES表示。除了相关性高的描述符,某些特征的方差可能非常低,这意味着这些特征对数据的区分度较差,因此没有什么用处。这些冗余的描述符不会为模型提供新的信息,反而可能影响模型的性能。在本例中,我们使用了。会尝试不同的回归算法,如线性回归、随机森林回归等,并输出每个模型的性能指标。
原创
博文更新于 2024.11.26 ·
1893 阅读 ·
37 点赞 ·
1 评论 ·
29 收藏

RDKit|虚拟筛选与分子对接

通过 RDKit 的分子预处理、指纹计算、与 AutoDock Vina 等对接软件集成,研究人员可以高效地进行虚拟筛选与分子对接分析,从而加速新药发现进程,降低实验成本。虚拟筛选和分子对接是药物发现过程中至关重要的计算方法,用于预测小分子与生物靶点之间的相互作用。这些方法可以有效缩小候选化合物的范围,从而提高实验筛选的效率。分子对接是通过模拟小分子(如药物分子)与蛋白质靶点的结合方式,预测其结合位点和结合模式。在药物发现过程中,虚拟筛选和分子对接常用于缩小化合物库的筛选范围,并预测候选分子的生物活性。
原创
博文更新于 2024.11.06 ·
746 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

使用Conda环境为Jupyter添加内核

在Jupyter Notebook中添加新的内核可以让你在不同的Python环境(如不同的Conda环境或virtualenv环境)中运行代码。
原创
博文更新于 2024.11.03 ·
889 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

python少儿编程PPT

发布资源 2024.10.30 ·
pdf

RDKit|特征提取与机器学习模型的构建

在化学信息学和药物设计中,特征提取和机器学习模型的构建是预测分子性质、筛选活性化合物、以及优化化学结构的关键步骤。在药物设计中,机器学习模型可以用于预测候选分子的药效、毒性或其他性质,从而筛选出具有潜力的化合物。在提取特征后,可以使用这些特征构建机器学习模型,以预测分子性质、活性或其他感兴趣的指标。Scikit-learn 是一个流行的机器学习库,提供了多种回归和分类算法,可以与 RDKit 提取的特征结合使用。拓扑指数是用于描述分子结构的拓扑性质的数值指标,常用于反映分子的形状、大小和复杂性。
原创
博文更新于 2024.10.30 ·
821 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

RDKit|分子数据的聚类分析

分子数据的聚类分析是化学信息学中的重要工具,能够帮助研究人员对大规模分子库进行结构分组、识别多样性、选择代表性化合物并优化先导化合物。结合 RDKit 的分子特征提取工具和 Scikit-learn 的聚类算法,研究人员可以高效地对分子数据进行聚类分析,在药物设计、材料科学和化学研究中发挥关键作用。聚类分析可以帮助研究人员识别分子库中的结构相似性,进行分子多样性分析,并筛选出具有代表性的化合物。通过聚类分析,可以在分子库中寻找与先导化合物相似的分子,帮助优化先导化合物的结构。
原创
博文更新于 2024.10.30 ·
560 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多