十小大
码龄9年
求更新 关注
提问 私信
  • 博客:15,781,675
    社区:2,528
    问答:86
    动态:6,695
    视频:1,523
    15,792,507
    总访问量
  • 1,060
    原创
  • 1,383
    排名
  • 19,313
    粉丝
  • 191
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:吉林省
目前就职: 吉林大学
加入CSDN时间: 2016-11-01

个人简介:985高校老师,博客之星2024Top65,底层视觉(超分、去噪、增强等)科研工作者。知乎同名,公众号:十小大的底层视觉工坊。

博客简介:

主要更新底层视觉(去噪、超分等)相关的科研内容,形式为【论文精读】+【论文复现】

博客描述:
致力于帮助研究生看懂论文,复现代码,做好实验,写好论文,订阅专栏即可免费阅读全部文章,获取相关资料,免费答疑!
查看详细资料
个人成就
  • 领域专家: 人工智能技术领域
  • 获得9,974次点赞
  • 内容获得981次评论
  • 获得8,628次收藏
  • 代码片获得15,116次分享
  • 原力等级
    原力等级
    9
    原力分
    12,844
    本月获得
    295
创作历程
  • 34篇
    2026年
  • 609篇
    2025年
  • 301篇
    2024年
  • 61篇
    2023年
  • 23篇
    2022年
  • 32篇
    2021年
成就勋章
TA的专栏
  • Pytorch深度学习图像去噪算法100例(论文精读+复现)
    付费
    312篇
  • 超分辨率重建(理论+实战,科研+应用)
    付费
    306篇
  • 图像增强(Image Enhancement)
    付费
    85篇
  • 图像拼接论文源码精读
    付费
    12篇
  • 即插即用模块
    付费
    1篇
  • 卷积(Convolution)
    付费
    19篇
  • 注意力机制(Attention)
    付费
    67篇
  • Transformer
    付费
    72篇
  • Mamba
    付费
    5篇
  • 图像拼接论文精读
    付费
    144篇
  • Python小项目
    付费
    15篇
  • 图像恢复(Image Restoration)
    4篇
  • 图像去条带(Image Debanding)
  • 图像去摩尔纹(Image Demoireing)
  • 图像去模糊(Image Deblurring)
  • 图像去雪(Image Desnowing)
  • 图像去雨(Image Deraining)
    3篇
  • 激活函数
  • RWKV
  • 图像去雾(Image Dehazing)
    3篇
  • Python Web开发
  • 小技巧汇总专栏
    18篇
  • 扩散模型论文精读
    7篇
  • 常见网络的实现
    6篇
  • 每天一个Python小知识
    1篇
  • Pytorch论文相关代码
    1篇
  • Pytorch小知识
    2篇
  • 报错汇总专栏
    1篇
  • 环境配置
    1篇

TA关注的专栏 28

TA关注的收藏夹 0

TA关注的社区 18

TA参与的活动 5

TA的推广
兴趣领域 设置
  • 人工智能
    opencv计算机视觉目标检测机器学习人工智能深度学习神经网络cnnpytorchtransformer视觉检测图像处理
核心技术

超分辨率重建专栏

—— 从SRCNN开始,带你读论文,写代码,复现结果,找创新点,完成论文。手把手教,保姆级攻略。帮助你顺利毕业,熟练掌握超分技术。

图像去噪专栏

—— 从DnCNN开始,带你读论文,写代码,复现结果,找创新点,完成论文。手把手教,保姆级攻略。帮助你顺利毕业,熟练掌握图像去噪技术。

图像拼接论文精读专栏

—— 图像拼接领域论文全覆盖(包含数据集),省时省力读论文,带你理解晦涩难懂的论文算法,学习零散的知识和数学原理,并学会写图像拼接领域的论文(介绍、相关工作、算法、实验、结论、并附有参考文献,不用一篇一篇文章再找)

图像拼接论文源码精读专栏

—— 图像拼接有源码的论文全覆盖(有的自己复现),帮助你通过源码进一步理解论文算法,助你做实验,跑出拼接结果,得到评价指标RMSE、SSIM、PSNR等,并寻找潜在创新点和改进提升思路。

创作活动更多

Claude Code 开发者创客大赛: AI 编程实战征文计划

随着 Claude Code 的爆火,AI 编程助手正在彻底改变开发者的工作流。它不仅能自动补全代码、优化算法,还能理解复杂需求并生成高质量脚本。 为探索 Claude Code 的潜力,CSDN 发起本次征文活动,邀请开发者分享实战经验、创新案例和技术思考,共同推动 AI 编程的普及与进化。 --- **创作主题**:用 Claude Code 重新定义编程效率 **创作方向**(供参考,鼓励自由发挥) **1. 效率革命:Claude Code 如何提升开发效率** - 对比传统编程 vs. Claude Code 辅助编程的耗时差异 - 实际项目中的效率提升案例(如快速生成 API、自动化脚本等) **2. 技术深挖:Claude Code 的高级用法** - 如何编写精准的 Prompt 让 Claude Code 生成更符合需求的代码 - 结合特定语言(Python/JS/Go等)的实战技巧 - 调试与优化 Claude Code 生成代码的方法 **3. 跨界融合:Claude Code 的创意应用** - 用 Claude Code 生成游戏逻辑、艺术代码(如 Processing 创意编程) - 结合低代码平台(如 Appsmith、Retool)快速搭建工具 - 在数据分析、爬虫、DevOps 等领域的落地案例 **4. 硬核挑战:用 Claude Code 完成一个完整项目** - 从零开始,仅依赖 Claude Code 开发一个小型应用(需附代码仓库和效果演示) - 记录开发过程中的思考、踩坑与解决方案 **5. 未来之辩:AI 编程的边界与伦理** - Claude Code 会取代程序员吗?职业发展的应对策略

89人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

【即插即用模块】注意力篇 | AAAI 2024 | DCMT:高低分辨率特征感知增强与融合,各类多尺度任务的涨点桥梁!

本文提出DCMT(双路径相关性匹配变换)模块,通过高低分辨率特征联动增强视觉任务性能。该模块包含高分辨率感知融合(ACM)和双路径匹配机制,能自适应聚合多尺度特征并筛选关键信息。实验表明,DCMT在超分等任务中显著提升PSNR指标,尤其适用于多尺度架构的视觉任务。模块支持即插即用,可无缝集成到UNet、金字塔等结构中,强化高低分辨率特征关联。代码实现包含动态特征变换、批量索引选择等优化,兼顾效率与性能。
原创
博文更新于 13 小时前 ·
8 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】注意力篇 | CVPR 2024 | PKI:多尺度+十字形大核卷积,全局局部感受野全覆盖,更轻更准!

本文提出了一种用于遥感目标检测的多尺度卷积模块PKI(Poly Kernel Inception Block),该模块通过并行使用3/5/7/9/11×11多尺度深度卷积核,有效捕捉不同尺度的特征。创新点包括:(1)采用轻量化瓶颈结构(1×1降维→多尺度卷积→1×1升维)控制参数量;(2)引入上下文锚点注意力(CAA)模块,通过全局池化和十字形卷积生成注意力权重,增强关键区域特征;(3)相比单一尺度卷积,PKI能同时处理局部细节和全局上下文,避免大核卷积的噪声问题。实验表明,该模块在遥感检测任务中实现了更高
原创
博文更新于 13 小时前 ·
7 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】Transformer篇 | TGRS 2025 | MGCM:多尺度双向注意力,全局和局部互补信息全捕捉,PSNR飙升至49!

AELF框架提出了一种自适应高光谱(HSI)与多光谱(MSI)图像融合方法,其核心模块MGCM通过多尺度双向交叉注意力机制实现跨模态特征互补。该模块采用三层池化尺度(8/4/2倍)分层捕捉全局到局部特征,结合深度卷积增强与残差连接,动态挖掘双模态互补信息。实验表明,MGCM能有效提升融合质量,消融研究验证了多尺度设计的必要性。模块代码提供双向注意力实现,支持即插即用,适用于需要双模态特征增强的视觉任务。添加VX:shixiaodayyds备注【即插即用】可加入技术交流群。
原创
博文更新于 13 小时前 ·
17 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】注意力篇 | TGRS 2025 | CSDF:双注意力+密集多尺度,协同工作显著增强特征!

MF-Mamba模型提出了一种用于遥感图像语义分割的CSDF模块,该模块结合了通道-空间注意力机制和密集多尺度特征融合。CSDF模块通过三分支膨胀卷积(膨胀率[3,5,7])提取多尺度特征,并采用双通道注意力机制(通道+空间)进行特征筛选优化。实验表明,在Vaihingen和WHDLD数据集上,该模块能有效提升分割性能(F1得分提高0.36%,mIoU提升0.55%),尤其改善了小目标检测效果。模块具有轻量化、高效的特点,可灵活嵌入各类视觉任务中。
原创
博文更新于 前天 17:39 ·
188 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】特征提取篇 | TGRS 2025 | MFIB:多维度四分支动态融合,特征提取并增强,全方位捕捉!

本文提出了一种多分支特征整合模块(MFIB),该模块通过四分支并行处理(空间、通道-高度、通道-宽度及点卷积)实现多维特征增强。创新点包括:动态权重分配机制、轻量化设计(深度卷积+点卷积)以及残差融合结构。实验表明,MFIB在保持较低计算成本(仅需基线模型46.43%参数和38.65%计算量)的同时,性能提升0.95dB。该模块适用于各类视觉任务,可灵活嵌入顺序或U型网络结构中,有效强化特征的多维度表达。
原创
博文更新于 前天 17:38 ·
300 阅读 ·
16 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】卷积篇 | TGRS 2025 | FSConv:空域捕结构+频域提细节,替代标准卷积下采样,深层特征明显增强!

FSCFNet提出了一种频域-空域融合卷积模块FSConv,用于红外小目标检测任务。该模块通过Haar小波变换将输入特征分解为高频(局部细节)和低频(全局结构)分量,并行处理后再交互融合,有效增强小目标的特征表达。实验表明,FSConv在深层网络表现优异,能显著提升检测精度(AP@50达0.897),同时保持轻量化设计。模块核心创新包括频空并行架构、高低频分离优化及交互融合机制,适用于需强化频域特征的视觉任务。代码提供PyTorch实现,支持即插即用。
原创
博文更新于 2026.01.22 ·
444 阅读 ·
22 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】注意力篇 | TGRS 2025 | FAENet:低频稳结构 + 高频补细节,多尺度金字塔增强特征!

本文提出了一种多尺度自适应采样融合网络(MASFNet)用于恶劣天气下的目标检测,其核心模块为特征自适应增强网络(FAENet)。FAENet通过拉普拉斯金字塔分解图像为多尺度高低频特征,采用残差特征增强模块(RFEM)增强低频结构信息,利用自适应变换增强模块(ATEM)调制高频细节,最后重建增强后的特征。实验表明该模块仅32.73KB参数即可提升检测性能,mAP达69.64%,能有效增强特征表达能力并保持细节与结构的协调性。
原创
博文更新于 2026.01.20 ·
196 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】Transformer篇 | Bibm 2024 | SMA:四种注意力协同并调制,替换传统自注意力实现涨点!

SMAFormer是一种新型医学图像分割模型,针对小肿瘤和不规则形状分割问题提出了协同多注意力(SMA)机制。该模型通过融合像素、通道和空间三种注意力,结合特征融合调制器,有效解决了传统Transformer在局部细节捕捉和多尺度建模上的不足。实验表明,SMAFormer在医学图像分割任务中表现优异,特别是对小目标和复杂形状的分割效果显著提升。模块采用双层互补架构,通过"PA×CA→Softmax→×SA"的协同融合机制实现多维度特征增强,支持即插即用式嵌入现有Transformer
原创
博文更新于 2026.01.20 ·
19 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】注意力篇 | ECCV 2024 | DPB:高低频动态分离+双提示融合,PSNR直冲40+!

本文提出了一种基于频率提示的图像恢复方法FPro,通过动态滤波器分离输入特征的高低频分量,并采用双提示块(DPB)进行频域专属提示生成与调制。DPB包含低频提示调制器(LPM)和高频提示调制器(HPM),分别处理不同频段信号,通过生成提示组件并融合解码器特征来优化恢复效果。实验表明,该方法在U型结构中表现优异,尤其适用于分割、底层视觉和多模态任务。模块通过动态无监督频率分离、频域专属提示生成和适配性融合机制,有效解决了传统方法对频域信息关注不足的问题,显著提升了图像恢复质量。
原创
博文更新于 2026.01.18 ·
33 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】卷积篇 | TCSVT 2025 | MFACB:多尺度膨胀融合,快速扩大感受野,多尺度特征精准捕捉!

本文提出了一种新型多尺度融合膨胀卷积模块MFACB,用于增强语义分割任务中的特征表达能力。该模块通过三分支串联膨胀卷积结构快速扩大感受野,采用双路径融合机制(基础信息路径+多尺度信息路径)实现高效上下文聚合。相比传统卷积块,MFACB在保持轻量化的同时显著提升了多尺度特征捕捉能力,实验表明其性能优于基础残差块。该模块支持自定义膨胀率和步长调整,可灵活嵌入不同网络阶段,适用于需要特征增强的视觉任务。
原创
博文更新于 2026.01.18 ·
160 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】Transformer篇 | TCSVT 2025 | WEVT:小波增强+高低频分离,替换ViT自注意力完美涨点!

本文提出了一种基于小波变换的视觉Transformer模块WEVT,用于高效处理多模态图像融合任务。该模块通过离散小波变换(DWT)将输入特征分解为低频和高频分量,分别采用窗口注意力机制和卷积进行处理,最后通过逆小波变换(IDWT)重建特征。这种设计实现了对全局结构和局部细节的针对性优化,同时降低了计算复杂度。实验表明,WEVT在多种融合任务中均达到SOTA性能,计算量比传统Transformer减少75%。模块可灵活替换标准Transformer的自注意力层,适用于高分辨率视觉任务。
原创
博文更新于 2026.01.17 ·
48 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】注意力篇 | TGRS 2025 | FDFEF:频域双模态融合并增强,避免特征丢失,准确率提高30%!

UMIS-YOLO提出了一种创新的频域特征增强融合模块(FDFEF),用于水下多模态图像实例分割。该模块通过双模态独立频域增强和幅值-相位分离融合,有效提升了RGB与深度特征的协同表达能力。FDFEF采用可学习复数权重对双模态特征进行频域增强,分别优化幅值(强度)和相位(结构)信息,并通过残差连接保留原始特征。实验表明,该模块能显著提升分割精度(mAP50+0.3,mAP75+0.9),同时保持实时计算性能。代码实现采用PyTorch框架,支持端到端训练,适用于需要双模态融合的视觉任务。
原创
博文更新于 2026.01.17 ·
162 阅读 ·
4 点赞 ·
0 评论 ·
1 收藏

【即插即用模块】Transformer篇 | CVPR 2024 | SFII:空频双域交互注意力,特征增强动态聚合,涨点必备!

本文提出了一种用于夜间图像去雾的半监督模型SFSNiD,其核心创新点是空频双域信息交互模块(SFII)。该模块通过自适应窗口注意力机制增强空间位置感知,结合频域动态聚合(FSDA)分离优化幅度与相位信息,并采用双域非线性映射实现空频特征深度交互。实验表明,SFII能有效处理夜间雾霾的局部耦合特性,在真实场景中实现更自然的亮度恢复。消融研究验证了各组件对性能的贡献,可视化结果展示了其在复杂光照条件下的优越性。该模块可灵活嵌入视觉任务中,提升特征表达的丰富性和鲁棒性。
原创
博文更新于 2026.01.15 ·
34 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】注意力篇 | ICME 2024 | PPA:双尺度补丁注意力,多分支融合,局部+全局特征捕获无压力!

PPA模块是HCF-Net网络的核心组件,专为红外小目标检测设计。该模块采用多分支并行架构,包含双尺度补丁注意力(p=2和p=4)、卷积特征提取和残差连接,通过6路特征直接相加实现高效融合。创新性地结合通道注意力(ECA模块)和空间注意力,形成协同优化机制。实验表明,PPA模块能显著提升检测性能,尤其适用于高分辨率视觉任务。模块代码实现了局部-全局注意力、高效通道注意力和空间注意力等核心功能,可作为即插即用组件替换CNN基础块。
原创
博文更新于 2026.01.15 ·
25 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】Transformer篇 | TCSVT 2025 | DAFM:双注意力聚合+反向跨模态筛选,特征精准捕捉并融合!

本文提出了一种双模态注意力融合模块(DAFM),用于增强多模态图像融合任务中的特征交互。该模块通过双注意力聚合机制,结合自注意力与跨模态注意力,有效提升特征融合效果。DAFM采用可学习平衡因子动态调整注意力权重,并运用深度卷积降低计算复杂度。实验结果表明,该模块能显著提升多模态图像融合质量,适用于RGB-红外等双模态视觉任务。模块代码实现简洁,可直接集成到现有网络中作为特征融合层使用。
原创
博文更新于 2026.01.14 ·
37 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】注意力篇 | TIP 2025 | SFMFusion:CEB优通道 + FEB强频域,双模块协同实现多模态融合SOTA!

本文提出了一种用于多模态图像融合的SFMFusion框架,包含两个创新模块:通道增强块(CEB)和频率增强块(FEB)。CEB通过双路径通道注意力和随机打乱机制增强特征多样性,FEB采用幅度-相位分离调制优化频域特征。实验表明,这两个模块能有效提升融合性能,尤其FEB对高频细节处理效果显著。模块代码简洁高效,可即插即用至各类视觉任务中,特别适用于需要特征增强和高频细节处理的场景。
原创
博文更新于 2026.01.14 ·
200 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】Transformer篇 | ECCV 2024 | DHSA:直方图自注意力,考虑背景分布,比传统自注意力猛涨2个点!

本文提出了一种基于直方图变换器的图像恢复方法Histoformer,核心创新是动态范围直方图自注意力模块(DHSA)。该模块将直方图统计思想融入自注意力机制,通过特征排序模拟直方图统计,使注意力能聚焦于特征的分布模式而非仅空间位置。DHSA采用双路径并行设计:块级路径捕捉局部特征关联,频率级路径处理全局相似特征模式,两者通过元素乘法融合。实验表明,该方法在恶劣天气图像恢复任务中性能优于现有方法,PSNR指标比Restormer提升2个点。该模块适用于高分辨率视觉任务,可直接替换传统Transformer中的
原创
博文更新于 2026.01.13 ·
38 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【即插即用模块】特征融合篇 | TMM 2025 | FAM:跨频+同频双重交互,高频补细节+低频稳全局,特征融合猛涨点!

本文提出了一种自适应频率感知网络AFANet,用于弱监督少样本语义分割任务。AFANet的核心创新是跨粒度频率感知模块(CFM),其中包含频率感知模块(FAM),通过将RGB图像解耦为高频和低频分布来优化语义结构信息。FAM采用三阶段频率自适应处理:初始分离、多轮增强(2轮同频强化+1轮跨频交互)和最终融合,实现全流程优化。模块支持灵活的频率分配(通过alpha参数调节低频通道占比),可适配不同任务需求。实验表明,CFM模块能有效提升性能,适用于多尺度视觉和频率敏感任务。代码实现包含初始分离和中间增强两个阶
原创
博文更新于 2026.01.13 ·
241 阅读 ·
10 点赞 ·
0 评论 ·
1 收藏

【即插即用模块】注意力篇 | TIP 2025 | CAFM:双向交叉注意力,特征融合信息互补,既轻量又涨点!

摘要:本文提出了一种用于高光谱快照压缩成像(SCI)的双阶段多尺度Transformer(DSMT)方法,其核心创新是交叉注意力融合模块(CAFM)。CAFM通过通道交叉注意力和空间注意力协同机制,实现双分支特征的深度交互与融合,解决了传统双分支方法交互不足的问题。实验表明,该模块能有效提升重建质量,适用于各类双分支/双模态特征融合任务。模块采用"通道统计→交叉注意力→空间筛选→融合输出"四步流程,代码已开源,可灵活集成到多种视觉任务中。
原创
博文更新于 2026.01.12 ·
103 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【即插即用模块】Transformer篇 | TIP 2025 | DWM-MSA:双窗口多尺度注意力,全局和局部特征全捕获,替换后完美涨点!

本文提出了一种用于高光谱图像重建的双窗口多尺度自注意力模块(DWM-MSA)。该模块通过双窗口设计(8×8和16×16)分别捕捉局部细节和中程依赖,并采用局部-非局部分支并行处理机制。核心创新包括:1)双窗口多尺度特征捕获;2)通道拆分优化实现高效并行计算;3)混合位置嵌入方法增强空间-光谱依赖性建模。实验表明,该模块在重建任务中PSNR提升最高达3.69dB,且能有效迁移到其他视觉Transformer模型中。代码已开源,适用于需要多尺度特征建模的视觉任务。
原创
博文更新于 2026.01.12 ·
713 阅读 ·
33 点赞 ·
0 评论 ·
0 收藏
加载更多