小白的Langchain实践__附RAG问答助手源码
获取文本内容 → 文本分割 → 创建嵌入模型 → 创建向量数据库并保存到本地。用户问题 → 知识向量库检索 → 知识内容+用户问题给到模型 →模型返回结果。分隔不同文档内容,使LLM能明确区分不同来源的信息。:将上一个操作的内容作为下一个操作的输入。:通过RAG和大模型进行简单问题的回答。: 是否在元数据中添加起始索引,默认。: 每个块的最大字符数,默认 100。:是否将分隔符视为正则表达式,默认。(按段落→行→空格→字符递归分割)中的文件将不会被提交到Git上。:计算长度的函数,默认。














