41号学员
码龄3年
求更新 关注
提问 私信
  • 博客:32,777
    32,777
    总访问量
  • 47
    原创
  • 86
    粉丝
  • 13
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2022-10-20
博客简介:

m0_74408245的博客

查看详细资料
个人成就
  • 获得478次点赞
  • 内容获得1次评论
  • 获得485次收藏
  • 博客总排名36,073名
  • 原力等级
    原力等级
    3
    原力分
    410
    本月获得
    0
创作历程
  • 47篇
    2025年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

创作活动更多

Claude Code 开发者创客大赛: AI 编程实战征文计划

随着 Claude Code 的爆火,AI 编程助手正在彻底改变开发者的工作流。它不仅能自动补全代码、优化算法,还能理解复杂需求并生成高质量脚本。 为探索 Claude Code 的潜力,CSDN 发起本次征文活动,邀请开发者分享实战经验、创新案例和技术思考,共同推动 AI 编程的普及与进化。 --- **创作主题**:用 Claude Code 重新定义编程效率 **创作方向**(供参考,鼓励自由发挥) **1. 效率革命:Claude Code 如何提升开发效率** - 对比传统编程 vs. Claude Code 辅助编程的耗时差异 - 实际项目中的效率提升案例(如快速生成 API、自动化脚本等) **2. 技术深挖:Claude Code 的高级用法** - 如何编写精准的 Prompt 让 Claude Code 生成更符合需求的代码 - 结合特定语言(Python/JS/Go等)的实战技巧 - 调试与优化 Claude Code 生成代码的方法 **3. 跨界融合:Claude Code 的创意应用** - 用 Claude Code 生成游戏逻辑、艺术代码(如 Processing 创意编程) - 结合低代码平台(如 Appsmith、Retool)快速搭建工具 - 在数据分析、爬虫、DevOps 等领域的落地案例 **4. 硬核挑战:用 Claude Code 完成一个完整项目** - 从零开始,仅依赖 Claude Code 开发一个小型应用(需附代码仓库和效果演示) - 记录开发过程中的思考、踩坑与解决方案 **5. 未来之辩:AI 编程的边界与伦理** - Claude Code 会取代程序员吗?职业发展的应对策略

36人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

图像分割完全指南:从任务本质到网络实现全解析

图像分割的核心是 “像素级分类”—— 通过算法预测每个像素的语义类别(如人、车、天空),输出与原图尺寸一致的 “分割掩膜(Mask)”,精准勾勒目标轮廓,实现 “哪里是什么” 的细粒度场景理解。任务分层:从语义分割(区域归类)到实例分割(个体识别),再到全景分割(全场景理解),逐步贴近真实场景需求;数据支撑:VOC、Cityscapes、COCO 等数据集提供标准化标注,为模型训练与评估奠定基础;指标核心:mIoU 作为黄金指标,全面衡量分割精度,指导模型优化;技术核心。
原创
博文更新于 2025.11.27 ·
334 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

U-Net 系列算法解析:从经典分割到多尺度特征融合升级

U-Net 系列的迭代逻辑清晰:从 U-Net 的 “基础特征复用”,到 U-Net++ 的 “密集融合 + 深度监督”,再到 U-Net+++ 的 “多尺度全面整合”,始终围绕 “提升特征利用效率” 核心,逐步解决 “细节丢失、梯度消失、多尺度适配” 等问题。若你是分割入门或需快速部署,优先选择 U-Net;若需高精度且需灵活调整模型复杂度,U-Net++ 是最佳选择;若聚焦科研或超精细分割,可尝试 U-Net+++。
原创
博文更新于 2025.11.27 ·
317 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

YOLOv5 核心架构解析:从模块创新到工程化优化

YOLOv5 的成功并非单一技术创新,而是通过 “模块优化 + 工程化打磨” 实现的综合提升:Focus 模块解决了下采样的信息丢失问题,Bottleneck CSP 强化了特征提取与训练稳定性,PAN 网络优化了多尺度特征融合,再配合便捷的可视化工具链,使其成为目标检测领域的 “开箱即用” 型标杆模型。无论是学术研究还是工业落地,YOLOv5 的模块化设计与工程化思路都值得借鉴,尤其适合需要快速部署、兼顾速度与精度的实时检测场景。
原创
博文更新于 2025.11.27 ·
557 阅读 ·
10 点赞 ·
0 评论 ·
11 收藏

YOLOv4 核心笔记:兼顾速度与精度的全方位优化

BOF 模块仅增加训练阶段的计算成本,不影响推理速度,核心围绕 “数据增强”“网络正则化”“损失函数优化” 三大方向展开。
原创
博文更新于 2025.10.22 ·
677 阅读 ·
18 点赞 ·
0 评论 ·
14 收藏

YOLOv3 核心笔记:多尺度特征融合与全面性能升级

YOLOv3 在 YOLOv1、v2 基础上,以 “强化小目标检测、提升多类别适配性” 为核心目标,通过多尺度特征融合、残差网络架构、丰富先验框等改进,实现精度与速度的进一步平衡,成为单阶段目标检测的经典模型之一。
原创
博文更新于 2025.10.17 ·
408 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

YOLOv1 与 YOLOv2 核心笔记:从单阶段检测开创到性能升级

YOLO 系列是单阶段目标检测的里程碑,YOLOv1 开创 “端到端回归” 新思路,YOLOv2 则通过多维度优化实现 “更快、更强” 的检测效果。这份笔记系统梳理两代模型的核心设计、网络架构、缺陷与改进,清晰呈现技术迭代逻辑。
原创
博文更新于 2025.10.16 ·
295 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

目标检测项目核心笔记:从任务定义到算法流程

核心目标:同时完成 “分类”(识别物体类别,如人、车、狗)和 “回归”(定位物体位置,用边界框表示)两大任务,输出 “类别 + 边界框坐标”。四大核心挑战多任务协同:分类任务关注全局特征,回归任务关注局部位置,需平衡两者损失;目标数量与种类繁多:图像中可能包含 0~N 个物体,且类别差异大(如小到猫、大到汽车);目标尺度不均:同一类物体可能因距离镜头远近呈现不同尺寸(如远处的人 vs 近处的人);外部环境干扰:遮挡(如物体被部分遮挡)、噪声(如模糊、光照变化)会降低检测精度。
原创
博文更新于 2025.10.15 ·
538 阅读 ·
11 点赞 ·
0 评论 ·
10 收藏

CIFAR-10 图像分类完整项目代码解析:从数据加载到模型训练与预测

这份代码实现了一个基于 PyTorch 的 CIFAR-10 数据集图像分类项目,涵盖全流程。以下从核心模块、代码逻辑、关键细节到结果解读,进行逐部分详细解析。
原创
博文更新于 2025.09.27 ·
758 阅读 ·
23 点赞 ·
0 评论 ·
13 收藏

图像分类项目核心笔记:从任务层级到解决方案

图像分类是计算机视觉的基础任务,核心目标是将图像映射到预设类别标签并最小化分类误差。这份笔记将系统梳理图像分类的任务层级、评估指标、模型关键概念,以及样本量不足的解决方案,为实战项目提供完整理论框架。
原创
博文更新于 2025.09.25 ·
879 阅读 ·
7 点赞 ·
0 评论 ·
15 收藏

PyTorch 数据处理工具箱笔记总结:从数据加载到可视化

Dataset是抽象类,需继承后实现__init__(初始化数据 / 标签)、(单样本读取)、__len__(样本总数)三个方法,核心是按索引返回单个样本(特征 + 标签)。# 初始化特征(5个2维向量)和标签(5个类别)# 按索引读取单个样本,转换为Tensor(适配PyTorch)txt = torch.from_numpy(self.Data[index]) # 特征:(2,)label = torch.tensor(self.Label[index]) # 标签:标量# 返回样本总数。
原创
博文更新于 2025.09.25 ·
940 阅读 ·
11 点赞 ·
0 评论 ·
10 收藏

构建神经网络的两大核心工具

PyTorch 中构建网络主要依赖和,二者功能互补但适用场景不同,需根据需求选择:需先实例化层并传入参数,再以函数形式调用处理数据,示例:2. nn.functional:无参数的纯函数工具核心特性 纯函数设计:更接近数学函数,无参数管理功能,若需参数需手动定义和传递; 无模式切换:dropout 等操作需手动控制训练 / 评估状态(如); 适用场景:无学习参数的操作,如激活函数()、池化层()、纯计算型操作()。使用方式直接调用函数并传入输入数据,若涉及参数需手动传递,示例:
原创
博文更新于 2025.09.23 ·
730 阅读 ·
7 点赞 ·
0 评论 ·
13 收藏

VGG和PyTorch 神经网络工具箱

组件间工作流程:输入数据经 “层” 处理得到预测值,损失函数计算预测值与真实值的误差,优化器根据误差梯度调整层的权重参数,形成闭环训练流程。依据损失函数计算的梯度,采用特定算法(如 SGD、Adam)更新模型参数,使损失最小化​。神经网络的基本结构单元,负责将输入张量通过数据变换(如线性变换、卷积)转换为输出张量​。参数学习的目标函数,量化模型预测值与真实值的差距,通过最小化损失实现参数优化​。神经网络的构建与运行依赖四大核心组件,各组件功能明确且协同工作:​。支持train()/eval()自动切换​。
原创
博文更新于 2025.09.22 ·
653 阅读 ·
19 点赞 ·
0 评论 ·
11 收藏

卷积神经网络(CNN)全解析:从原理到经典架构,读懂图像识别的核心

在深度学习领域,卷积神经网络(CNN)是图像识别、计算机视觉的 “核心引擎”—— 它凭借对图像空间结构的精准捕捉,彻底改变了传统机器学习处理图像的方式。从手写数字识别到自动驾驶视觉感知,CNN 的应用无处不在。今天我们从 “为什么需要 CNN” 讲起,拆解卷积层、池化层的核心逻辑,再带你梳理 LeNet、AlexNet、VGG 等经典架构的演进,帮你掌握 CNN 的本质与实战思路。
原创
博文更新于 2025.09.19 ·
895 阅读 ·
7 点赞 ·
0 评论 ·
17 收藏

多层感知机(MLP)入门:从感知机到深度神经网络的关键一步

在深度学习的发展历程中,多层感知机(MLP)是从 “简单线性模型” 迈向 “复杂非线性模型” 的里程碑 —— 它通过引入 “隐藏层” 和 “激活函数”,解决了感知机无法处理的线性不可分问题,成为现代神经网络(如 CNN、Transformer)的基础架构。今天我们从经典感知机讲起,拆解多层感知机的核心逻辑、激活函数、训练方法,帮你理解 “深度” 如何赋予模型更强的表示能力。
原创
博文更新于 2025.09.18 ·
1155 阅读 ·
12 点赞 ·
0 评论 ·
5 收藏

深度学习基础:线性回归与 Softmax 回归全解析,从回归到分类的桥梁

线性回归是深度学习的 “基础积木”,理解其参数优化逻辑(梯度下降、损失函数),就能迁移到复杂模型;适用场景:房价预测、销量估算、气温预测等连续值预测任务。Softmax 回归是 “回归到分类” 的关键桥梁,通过 Softmax 运算解决了分类任务的概率输出问题;适用场景:手写数字识别、图像分类(如 ImageNet 1000 类)、文本分类(如恶语评论分类)等多类分类任务。共性与延伸两者都是 “单层神经网络”,复杂模型(如 CNN、ResNet)的输出层常采用 Softmax 回归做分类;
原创
博文更新于 2025.09.17 ·
1038 阅读 ·
18 点赞 ·
1 评论 ·
13 收藏

深度学习入门:从概念到实践,看懂 AI 时代的核心技术

在这个 AI 渗透生活方方面面的时代,深度学习早已不是晦涩的技术术语 —— 它藏在人脸识别考勤、短视频推荐、语音助手背后,甚至正在改变医疗、交通等行业的运作方式。今天我们从行业背景、核心概念、技术分类到实战工具,带你系统入门深度学习,搞懂它的本质与应用。
原创
博文更新于 2025.09.17 ·
613 阅读 ·
16 点赞 ·
0 评论 ·
9 收藏

朴素贝叶斯算法全解析:从贝叶斯公式到三大模型实战

核心逻辑:基于贝叶斯定理和特征独立假设,通过 “先验概率 + 似然概率” 计算后验概率,实现分类;模型选择离散计数特征→多项式朴素贝叶斯;连续特征→高斯朴素贝叶斯;二值化特征→伯努利朴素贝叶斯;实战技巧特征非负:多项式和伯努利模型要求特征非负,需提前处理(如归一化);平滑系数:\(\alpha\)建议设为 1.0(默认),避免概率为 0;先验概率:若有领域知识,可通过自定义先验概率,提升模型效果。
原创
博文更新于 2025.08.25 ·
1002 阅读 ·
11 点赞 ·
0 评论 ·
23 收藏

线性回归入门:从原理到实战的完整指南

核心逻辑:通过最小二乘法找到最优线性模型,最小化预测值与真实值的均方误差;关键指标:R² 是最直观的评估指标,越接近 1 说明模型拟合效果越好;实战技巧数据预处理:先处理异常值、缺失值,若特征量级差异大(如 “面积㎡” 和 “年收入万”),需标准化;特征工程:对非线性数据,可添加多项式特征(如 \(x^2\)、\(x_1x_2\)),将其转化为线性问题;避免多重共线性:用相关性分析删除高度相关的特征。
原创
博文更新于 2025.08.25 ·
873 阅读 ·
13 点赞 ·
0 评论 ·
15 收藏

机器学习聚类与集成算法全解析:从 K-Means 到随机森林的实战指南

算法类型核心思想代表算法适用场景优点缺点K-Means 聚类按距离分组,最小化簇内误差K-Means无标签数据分组高效、简单、直观K 值难定、仅适用于球形簇Bagging 集成并行采样,投票平均随机森林分类 / 回归,抗过拟合并行高效、抗过拟合、可解释性强对异常值敏感Boosting 集成串行加权,纠正错误AdaBoost分类 / 回归,高精度需求精度高、无需复杂调参串行慢、易过拟合Stacking 集成多层融合,结合多模型优点多层模型组合。
原创
博文更新于 2025.08.21 ·
1233 阅读 ·
13 点赞 ·
0 评论 ·
29 收藏

机器学习数据预处理全攻略:从缺失值到特征编码,一步搞定数据清洗

数据加载与探索:用 Pandas 读取数据,info()查看缺失值;缺失值处理:少量缺失→删除,大量缺失→填充(均值 / 中位数 / 众数);特征编码:有序变量→序号编码,名义变量→独热编码,目标变量→标签编码;数据标准化:树模型除外,其他模型→Z-Score/Min-Max 标准化;特征简化(可选):连续特征→二值化 / 离散化(
原创
博文更新于 2025.08.21 ·
1280 阅读 ·
18 点赞 ·
0 评论 ·
12 收藏
加载更多