伊布拉西莫
码龄14年
求更新 关注
提问 私信
  • 博客:410,904
    问答:22
    410,926
    总访问量
  • 268
    原创
  • 3,944
    粉丝
  • 30
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:日本
加入CSDN时间: 2011-08-25

个人简介:思想上的强者,行动上的弱者。

博客简介:

dark

查看详细资料
个人成就
  • 获得686次点赞
  • 内容获得91次评论
  • 获得1,165次收藏
  • 代码片获得1,381次分享
  • 博客总排名10,486名
  • 原力等级
    原力等级
    5
    原力分
    1,934
    本月获得
    3
创作历程
  • 44篇
    2025年
  • 8篇
    2024年
  • 13篇
    2023年
  • 34篇
    2022年
  • 27篇
    2021年
  • 64篇
    2020年
  • 62篇
    2019年
  • 88篇
    2018年
  • 7篇
    2017年
成就勋章
TA的专栏
  • AI
    31篇
  • 工具
    7篇
  • test
    6篇
  • nginx
    3篇
  • lua
  • log
    1篇
  • 工作流
    2篇
  • 任务调度
    1篇
  • maven
    2篇
  • idea
    2篇
  • git
    1篇
  • 排坑
    3篇
  • 分布式相关
  • mycat
    8篇
  • sharding-jdbc
    4篇
  • 分布式事务
    7篇
  • 算法
    4篇
  • 项目管理
    1篇
  • 设计模式
  • 架构
    2篇
  • J2SE
    15篇
  • io
    3篇
  • java-collections
    11篇
  • http
  • JUC
    23篇
  • ASM
    4篇
  • 响应式
    2篇
  • 虚拟机
    21篇
  • SSM
    2篇
  • servlet
    2篇
  • springMVC
    13篇
  • mybatis
    4篇
  • spring
    24篇
  • 数据库连接池
    1篇
  • spring-security
    1篇
  • 大数据
    2篇
  • zookeeper
    6篇
  • storm
    11篇
  • ELK
    11篇
  • MQ
    2篇
  • kafka
    8篇
  • rocketmq
    5篇
  • RDBMS_NOSQL
    1篇
  • mongodb
    3篇
  • redis
    4篇
  • memcache
  • neo4j
    1篇
  • mysql
    13篇
  • oracle
    3篇
  • 微服务
    11篇
  • dubbo
    4篇
  • spring-cloud
    7篇
  • spring-cloud-alibab
    6篇
  • spring-boot
    16篇
  • devops
    8篇
  • 操作系统
    2篇
  • docker
    5篇
  • k8s
    5篇
  • zabbix
  • 网络
    9篇
  • netty
    8篇
  • 源码分析
    10篇
  • tomcat
    6篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

兴趣领域 设置
  • 大数据
    redis
  • 后端
    spring架构
创作活动更多

Claude Code 开发者创客大赛: AI 编程实战征文计划

随着 Claude Code 的爆火,AI 编程助手正在彻底改变开发者的工作流。它不仅能自动补全代码、优化算法,还能理解复杂需求并生成高质量脚本。 为探索 Claude Code 的潜力,CSDN 发起本次征文活动,邀请开发者分享实战经验、创新案例和技术思考,共同推动 AI 编程的普及与进化。 --- **创作主题**:用 Claude Code 重新定义编程效率 **创作方向**(供参考,鼓励自由发挥) **1. 效率革命:Claude Code 如何提升开发效率** - 对比传统编程 vs. Claude Code 辅助编程的耗时差异 - 实际项目中的效率提升案例(如快速生成 API、自动化脚本等) **2. 技术深挖:Claude Code 的高级用法** - 如何编写精准的 Prompt 让 Claude Code 生成更符合需求的代码 - 结合特定语言(Python/JS/Go等)的实战技巧 - 调试与优化 Claude Code 生成代码的方法 **3. 跨界融合:Claude Code 的创意应用** - 用 Claude Code 生成游戏逻辑、艺术代码(如 Processing 创意编程) - 结合低代码平台(如 Appsmith、Retool)快速搭建工具 - 在数据分析、爬虫、DevOps 等领域的落地案例 **4. 硬核挑战:用 Claude Code 完成一个完整项目** - 从零开始,仅依赖 Claude Code 开发一个小型应用(需附代码仓库和效果演示) - 记录开发过程中的思考、踩坑与解决方案 **5. 未来之辩:AI 编程的边界与伦理** - Claude Code 会取代程序员吗?职业发展的应对策略

100人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

[llamaindex]Agent & WorkFlow

本文介绍了LlamaIndex中代理和工作流的核心概念与实现方法。在代理部分,展示了如何通过FunctionAgent创建基于Azure OpenAI的代理,并详细说明了代理的操作循环流程,包括工具调用、内存管理、多模态处理和多代理系统协同。在工作流部分,阐述了事件驱动、基于步骤的执行模式,通过JokeFlow示例演示了如何定义事件类型、设置工作流类、处理入口点和退出点。文章强调了工作流相比传统DAG方法在管理复杂AI应用时的优势,包括更好的可读性、灵活性和开发体验。两种技术都提供了Python原生实现方式
翻译
博文更新于 2025.12.25 ·
34 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[autogen]AgentChat-Advanced翻译与实践

AgentChat 中的所有Agent都继承自:定义agent响应消息行为的抽象方法。它返回一个 Response 对象。on_reset():将agent重置为其初始状态的抽象方法。:agent在其响应中可能生成的消息类型列表(BaseChatMessage)。..."""模型会使用代理的 name 和 description 属性来确定下一个说话人,因此建议提供有意义的名称和描述。""" ,)我们常常希望更好地控制选择过程。为此,我们可以通过设置。
原创
博文更新于 2025.12.09 ·
929 阅读 ·
7 点赞 ·
0 评论 ·
23 收藏

[deeplearning.ai]ai-agentic-design-patterns-with-autogen学习笔记

AutoGen 是一个开源编程框架,用于构建 AI agents并促进多个agents之间的协作以完成任务.AutoGen 旨在提供一个易于使用且灵活的框架,以加速开发和研究agentic AI,agents与agents之间可以进行对话支持使用LLM 和 tool支持自主和人机协作的工作流程以及multi-agent对话模式。
原创
博文更新于 2025.12.09 ·
598 阅读 ·
29 点赞 ·
0 评论 ·
17 收藏

[autogen]AgentChat-Tutorial翻译与实践

您可以通过继承基类或来创建自定义消息类型。这样,您可以定义自己的消息格式和行为,以满足您的应用程序需求。自定义消息类型在编写自定义智能体时非常有用。内置的终止条件足以满足大多数使用场景。但是,有时您可能需要实现自定义的终止条件,可以通过继承类来实现这一点。例如,我们创建了一个自定义终止条件,当进行特定函数调用时,该条件会停止对话。"""@property#首先,我们创建一个简单的函数,当评论家代理批准一条消息时,该函数将被调用。
原创
博文更新于 2025.12.08 ·
981 阅读 ·
8 点赞 ·
0 评论 ·
19 收藏

[deeplearning.ai]knowledge-graphs-rag 实践

本文是基于课程的学习&实践# PromptContext:{context}Question:{question}""")# LCEL pipeline: 使用 RunnableLambda 包装 retriever 调用# LCEL pipeline: 直接用 retriever 作为 Runnablechain = (| prompt| llm本文是基于课程的学习&实践# PromptContext:{context}Question:{question}""")
原创
博文更新于 2025.11.29 ·
822 阅读 ·
19 点赞 ·
0 评论 ·
24 收藏

Neo4j自定义Genai embedding plugin

本文介绍了如何自定义Neo4j GenAI插件以支持开源大模型Ollama,降低使用成本。首先通过Docker启动Neo4j并加载genai插件,然后使用LiteLLM代理Ollama接口进行向量编码。由于原生插件不支持自定义endpoint,提出了通过APOC进行HTTP调用的解决方案,并展示了如何构建自定义插件。最后演示了创建向量索引、生成嵌入向量并进行查询的完整流程,验证了方案的可行性。
原创
博文更新于 2025.11.26 ·
396 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

LiteLLM 简介&实战

在本地部署大模型或构建 RAG 系统时,你可能遇到这些痛点:• 某些工具 只支持 OpenAI API(如、部分 Spring AI 配置、某些前端库等)• 但你想用 Ollama 或本地模型• 不同 LLM API 格式各不相同,调用麻烦• 想做 统一 API、日志、限流、负载均衡、代理管理这就是 LiteLLM 存在的意义。笔者就是在做的过程中,遇到了不支持的问题,所以才转向LiteLLM需求帮助.
原创
博文更新于 2025.11.22 ·
1026 阅读 ·
22 点赞 ·
0 评论 ·
27 收藏

[deeplearning-ai] langchain-chat-with-your-data 学习笔记

在执行 RetrievalQA 时,LangChain 会通过 retriever(这里是 vectordb.as_retriever())从你的向量数据库中找出与 question 最相关的文本片段(通常是 1~k 个 chunk)。分隔符,所以不会被分割成多个段落,LangChain 会当成一个整体段落处理,然后判断该段落是否超过 chunk_size,但实际字符数(:你想限定检索范围,例如只问《第三讲》中关于 regression 的内容,但结果却混入了《第一讲》和《第二讲》的片段。
翻译
博文更新于 2025.11.18 ·
106 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[deeplearning-ai] functions-tools-agents-langchain 学习笔记

输出。
翻译
博文更新于 2025.11.18 ·
107 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[deeplearning-ai] 《Prompt Engineering for Developer》学习笔记

基础LLM(Base LLM):预测下一个token。指令调优LLM(Instruction-tuned LLM):在基础模型上微调以更好地响应指令。作为 Prompt 工程师,关键不是一开始就要求完美的 Prompt,而是掌握有效的 Prompt 开发流程。具体来说,首先编写初版 Prompt,然后通过多轮调整逐步改进,直到生成了满意的结果。对于更复杂的应用,可以在多个样本上进行迭代训练,评估 Prompt 的平均表现。
转载
博文更新于 2025.11.18 ·
263 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[deeplearning-ai] ai-agents-in-langgraph 学习笔记

TavilySearchResults 是 LangChain 提供的一个工具调用 Tavily API 来执行网络搜索,并把搜索结果以结构化的文档形式返回,供 Agent 或 LLM 使用。"llm",self.model = model.bind_tools(tools) # 为了让llm 知道有哪些tools可以用return {"messages": [response]} # 将结果以[]返回,会通过 operator.add 追加到messages里。
翻译
博文更新于 2025.11.18 ·
127 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Spring AI Evaluation Testing(评估测试)

在基于大型语言模型(LLM)构建应用时,仅仅“模型调用”并不够,还必须 测试生成结果是否满足预期(比如相关性、准确性、无幻觉、业务契合度等)。Spring AI 提供了一套 “评估测试” (Evaluation Testing)机制,使开发者能在集成/测试阶段,引入自动化手段来验证 LLM 的输出质量。RelevancyEvaluator(相关性评估)和FactCheckingEvaluator(事实核查评估)。这些工具可用于 对话–检索增强生成 (RAG) 流程 或 纯模型生成场景 的自动化验证。
原创
博文更新于 2025.11.17 ·
622 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

Anthropic - 构建高效Agents

在 LLM 领域,成功不在于构建最复杂的系统,而在于构建最适合您需求的系统。从简单的提示开始,通过全面的评估进行优化,仅当简单解决方案不足时,才添加多步骤的智能体系统。保持 Agent 程序设计的简洁性 (Maintain simplicity)。通过明确展示Agent的规划步骤来提高透明度。通过详尽的工具文档和测试 ,精心设计您的代理-计算机接口 (ACI)。
翻译
博文更新于 2025.11.15 ·
44 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Spring AI RAG源码分析

在现代大型语言模型(LLM)应用中,。在 Spring AI 框架中,扮演着 RAG (检索增强生成) 流程的指挥官角色。它负责编排从用户查询到最终上下文准备的整个过程,确保 LLM 接收到的 Prompt 是经过多层优化和增强的高质量输入。本文将基于其内部的六个核心属性,详细阐述 RAG 流程中每一个组件的作用、典型应用场景,以及它们如何协同工作,共同提升问答系统的性能。
原创
博文更新于 2025.11.15 ·
926 阅读 ·
23 点赞 ·
0 评论 ·
28 收藏

Resilience4j 入门与实战

下游服务响应缓慢或超时外部 API 不稳定导致频繁失败某个接口被频繁调用造成雪崩要提高系统的稳定性与弹性(Resilience),就离不开熔断(Circuit Breaker)限流(Rate Limiter)重试(Retry)、**超时(TimeLimiter)**等机制。过去,我们可能使用 Netflix 的 Hystrix,但 Hystrix 已经停止维护。如今,Resilience4j 成为了最受欢迎的轻量级替代方案。
原创
博文更新于 2025.11.10 ·
905 阅读 ·
28 点赞 ·
0 评论 ·
22 收藏

Spring 6.x Observability 源码解析与实战

Context> {
原创
博文更新于 2025.11.07 ·
816 阅读 ·
26 点赞 ·
0 评论 ·
12 收藏

Spring 6.x HTTP interface 使用说明

Spring Framework 6 引入了通过 Java 接口定义 HTTP 服务的能力,该接口的方法使用注解标记。它的用法看起来特别像下面可以通过访问API:,来展示HTTP interface 的使用方法。接口即可@Override你可以自定义一个}).build();
原创
博文更新于 2025.11.08 ·
744 阅读 ·
13 点赞 ·
0 评论 ·
12 收藏

Spring Boot 扩展点全览

这些扩展点在容器扫描配置类、加载 Bean 定义后,但在任何 Bean 实例化前执行。序号扩展点类型/接口作用描述4接口🔹动态导入配置类(用于@EnableXxx根据条件动态返回需要导入的类名,是 Spring Boot自动配置机制的基础。5接口🔹延迟导入配置类。将导入操作推迟到所有类都加载完之后,确保在处理自动配置时能看到所有用户定义的 Bean。6接口🔹编程式注册 Bean 定义。通常配合@Import使用,用于在配置类加载时,以编程方式注册。7接口🔹。
原创
博文更新于 2025.11.07 ·
770 阅读 ·
13 点赞 ·
0 评论 ·
10 收藏

Spring 延迟加载机制源码分析

是 Spring 提供的一个接口,用于在 BeanFactory/ApplicationContext 环境中“按需、可选、延迟”地获取类型为T的 Bean 实例。官方 Javadoc 中的描述为:从这些描述中,我们可以总结按需获取:与普通注入不同,并不会在启动时立即把一个T型 Bean 实例固定注入,而是允许在运行时通过调用其方法获取。可选性:支持 Bean 类型T在容器中不存在的情境,而不必在启动时失败。多实例/多候选处理能力:当存在多个T类型或者多实现时,
原创
博文更新于 2025.11.06 ·
728 阅读 ·
18 点赞 ·
0 评论 ·
9 收藏

Prometheus 查询语法(PromQL)速查

PromQL 是一种专为时序数据库 Prometheus 设计的查询语言。实时提取指标(metrics)聚合不同维度的数据进行统计计算与告警条件判断可视化(Grafana、Prometheus Web UI、Alertmanager)
原创
博文更新于 2025.11.05 ·
467 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏
加载更多