Thomas_Cai
码龄10年
求更新 关注
提问 私信
  • 博客:391,073
    问答:197
    动态:492
    391,762
    总访问量
  • 172
    原创
  • 820
    粉丝
  • 76
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2015-12-03

个人简介:One person go faster, a group of people can go further~

博客简介:

Thomas_Cai的记忆殿堂

博客描述:
个人笔记,希望也帮到你~
查看详细资料
个人成就
  • 获得1,355次点赞
  • 内容获得90次评论
  • 获得1,932次收藏
  • 代码片获得15,093次分享
  • 博客总排名12,622名
  • 原力等级
    原力等级
    6
    原力分
    2,074
    本月获得
    3
创作历程
  • 25篇
    2025年
  • 37篇
    2024年
  • 48篇
    2023年
  • 7篇
    2022年
  • 9篇
    2021年
  • 13篇
    2020年
  • 19篇
    2019年
  • 5篇
    2018年
  • 1篇
    2017年
  • 10篇
    2016年
成就勋章
TA的专栏
  • 模型性能优化
    付费
    1篇
  • LLM大模型
    12篇
  • 深度学习
    85篇
  • 扩散模型
    1篇
  • 异常检测
    4篇
  • 时间序列
    9篇
  • C++技巧
    10篇
  • Nvidia&Cuda
    12篇
  • Linux
    12篇
  • OpenCV
    7篇
  • 标注工具
    1篇
  • TensorRT
    7篇
  • 文本检测
    3篇
  • 目标检测
    6篇
  • 多标签分类算法
    7篇
  • IDE
    6篇
  • Python专题
    20篇
  • 炼丹技巧
    8篇
  • Conda&Anaconda
    4篇
  • 报错集合
    15篇
  • 机器学习
    16篇
  • leetcode算法
    17篇
  • 工程技术
    38篇
  • 操作系统实战
    7篇
  • 开源贡献
    1篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    深度学习数据分析
创作活动更多

Claude Code 开发者创客大赛: AI 编程实战征文计划

随着 Claude Code 的爆火,AI 编程助手正在彻底改变开发者的工作流。它不仅能自动补全代码、优化算法,还能理解复杂需求并生成高质量脚本。 为探索 Claude Code 的潜力,CSDN 发起本次征文活动,邀请开发者分享实战经验、创新案例和技术思考,共同推动 AI 编程的普及与进化。 --- **创作主题**:用 Claude Code 重新定义编程效率 **创作方向**(供参考,鼓励自由发挥) **1. 效率革命:Claude Code 如何提升开发效率** - 对比传统编程 vs. Claude Code 辅助编程的耗时差异 - 实际项目中的效率提升案例(如快速生成 API、自动化脚本等) **2. 技术深挖:Claude Code 的高级用法** - 如何编写精准的 Prompt 让 Claude Code 生成更符合需求的代码 - 结合特定语言(Python/JS/Go等)的实战技巧 - 调试与优化 Claude Code 生成代码的方法 **3. 跨界融合:Claude Code 的创意应用** - 用 Claude Code 生成游戏逻辑、艺术代码(如 Processing 创意编程) - 结合低代码平台(如 Appsmith、Retool)快速搭建工具 - 在数据分析、爬虫、DevOps 等领域的落地案例 **4. 硬核挑战:用 Claude Code 完成一个完整项目** - 从零开始,仅依赖 Claude Code 开发一个小型应用(需附代码仓库和效果演示) - 记录开发过程中的思考、踩坑与解决方案 **5. 未来之辩:AI 编程的边界与伦理** - Claude Code 会取代程序员吗?职业发展的应对策略

47人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 收藏
  • 代码仓
  • 资源
  • 社区
  • 最近

  • 文章

  • 专栏

  • 收藏

  • 代码仓

  • 资源

  • 社区

搜索 取消

vscode(cursor)配置python环境,含远程调试

一文教你用AI编程工具Cursor的各种常用功能
原创
博文更新于 2025.12.26 ·
4580 阅读 ·
3 点赞 ·
1 评论 ·
7 收藏

MCP服务创建指南

本文探讨了大规模表格分析中的技术挑战,介绍了MCP(Model Context Protocol)作为解决方案。文章对比了FunctionCall和MCP两种工具调用方式,指出MCP通过标准化协议解决了生态兼容性问题。详细阐述了MCP的基本架构、通信协议(STDIO/SSE/HTTP)和核心流程,并以VsCode+Cline配置table-reader服务为例,展示了MCP在分块处理大规模表格数据时的实际应用。最后指出MCP的局限性包括提示词设计要求和较高的Token消耗。
原创
博文更新于 2025.12.13 ·
830 阅读 ·
12 点赞 ·
0 评论 ·
25 收藏

YOLOv10剪枝|稀疏训练、基于torch-pruning剪枝以及微调实践

详细介绍了YOLOv10模型的结构化剪枝方法,重点阐述了稀疏训练原理以及结构化剪枝的实现分析。
原创
博文更新于 2025.12.13 ·
176 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

大模型微调快速入门

本文介绍了基于LLaMA-Factory框架的大模型微调全流程。首先对比了主流微调工具的特点,选定LLaMA-Factory作为开发框架。随后详细说明了环境搭建步骤,包括创建Python 3.10虚拟环境、源码安装及验证。在数据准备环节,重点阐述了数据集JSON文件的配置格式要求,包括dataset_info.json的结构和关联数据文件规范。最后简要介绍了通过图形化界面启动训练的过程,并提及训练过程中的损失曲线监控功能。全文为开发者提供了从框架选型到实际训练的全流程指导。
原创
博文更新于 2025.11.01 ·
518 阅读 ·
3 点赞 ·
0 评论 ·
11 收藏

Langgraph研究

LangGraph是一个用于构建多步骤LLM工作流的开源框架,采用有向图(DAG)定义流程。核心概念包括节点(Node)、边(Edge)、状态(State)和图(Graph),支持可视化、可控制和有状态的流程编排。框架提供了add_node、add_edge等方法构建工作流,并支持条件分支。特别介绍了Agent的实现方式,通过"工具调用+模型循环"的ReAct范式执行任务,包含ToolNode、状态注入等关键组件。最后给出一个最小实现示例,展示如何通过条件边控制Agent循环执行工具调用。
原创
博文更新于 2025.11.01 ·
1208 阅读 ·
16 点赞 ·
0 评论 ·
23 收藏

DINOv1/v2/v3简明理解

DINO是一种自监督视觉表征学习方法,通过教师-学生框架实现无标签学习。其核心机制包括:教师模型通过EMA(指数移动平均)从学生模型逐步演化,提供稳定目标;多视角一致性约束使模型学习高层语义;centering和sharpening技术防止特征坍塌。相比对比学习,DINO仅需正样本对,训练更简单。DINOv2进一步扩展了数据规模(1.42亿图像)和模型能力,引入Patch级目标等优化。DINOv3则致力于更大规模(170亿图像)和多任务通用性提升。
原创
博文更新于 2025.10.20 ·
1430 阅读 ·
31 点赞 ·
0 评论 ·
18 收藏

Jetson上安装TensorRT

本文介绍了Jetson系统镜像安装CUDA、cuDNN、TensorRT等组件的详细步骤。主要内容包括:1)区分Jetson和Server版NVIDIA组件的差异;2)提供检测Jetson组件版本的脚本;3)详细说明从更新源到安装CUDA、cuDNN、TensorRT的完整流程,包括解决常见错误的方法;4)指导如何安装TensorRT工具trtexec。文章特别强调了JetPack版本组件与Ubuntu官方版本的区别,并提供了环境变量配置、错误排查等实用技巧,帮助用户正确安装和配置Jetson开发环境。
原创
博文更新于 2025.10.20 ·
575 阅读 ·
4 点赞 ·
0 评论 ·
12 收藏

YOLOv8支持旋转框检测(OBB)任务随记

本文介绍了YOLOv8-OBB旋转框检测任务的快速上手指南。主要内容包括:1)数据集制作需将旋转框坐标转为分割任务格式并进行重采样;2)训练过程将预测角度转换为xywh格式计算IOU损失,并解释了数据增强和标签转换原理;3)详细分析了网络输出结构和损失函数计算方式;4)说明推理阶段直接输出中心点坐标、宽高和角度的后处理流程。文章还提供了官方文档参考链接,帮助读者快速实现旋转框检测任务。
原创
博文更新于 2025.09.06 ·
1256 阅读 ·
23 点赞 ·
0 评论 ·
22 收藏

时序预测力作PatchMixer论文理解

本文提出PatchMixer模型,这是一种基于深度可分离卷积和补丁混合架构的时间序列预测方法。模型通过将时间序列划分为补丁进行处理,采用双头预测机制分别建模线性和非线性模式。训练流程包括数据准备、模型建立、损失定义、参数优化等步骤,关键超参数包括补丁大小、学习率、批量大小等。预测过程通过补丁划分、嵌入和深度可分离卷积处理实现。实验采用7:1:2的数据划分比例,输入序列长度为96时,模型可预测未来96个时间点。结果表明PatchMixer能有效捕捉时间序列特征,在预测任务中展现出优良性能。代码已在GitHub
原创
博文更新于 2025.05.28 ·
1207 阅读 ·
10 点赞 ·
0 评论 ·
9 收藏

yolov8分割任务的推理和后处理解析

yolov8分割任务的后处理解析
原创
博文更新于 2025.05.28 ·
2623 阅读 ·
35 点赞 ·
2 评论 ·
42 收藏

deepseek开源资料汇总

deepseek开源技术回顾
原创
博文更新于 2025.05.27 ·
1533 阅读 ·
17 点赞 ·
0 评论 ·
8 收藏

本地部署dify爬坑指南

本文介绍了Dify平台的本地部署流程及注意事项。主要内容包括:1)Docker Compose安装指南;2)解决Docker网络问题的详细步骤,包括镜像源配置和DNS设置;3)Dify本地部署命令;4)模型部署方法,建议在与Dify网络互通的环境中运行。文章提供了完整的操作流程和参考链接,帮助用户避免常见安装问题,实现Dify平台的顺利部署和使用。
原创
博文更新于 2025.05.27 ·
1187 阅读 ·
24 点赞 ·
0 评论 ·
11 收藏

LangChain理解

langchain的使用笔记
原创
博文更新于 2025.05.26 ·
350 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

目标检测之COCO评价指标(含mAP)

一、基础概念TP: IoU>0.5的检测框数量(同一Ground Truth只计算一次)FP: IoU<=0.5的检测框,或者是检测到同一个GT的多余检测框的数量FN: 没有检测到的GT的数量Precision: TP / (TP + FP)Recall: TP / (TP + FN)PR曲线: Precision-Recall曲线AP: PR曲线下面积mAP: mean Average Precision, 即各类别AP的平均值二、AP、mAP、AR、mAR计算AP
原创
博文更新于 2025.05.09 ·
25755 阅读 ·
47 点赞 ·
16 评论 ·
178 收藏

python并行操作,您了解多少?(线程池ThreadPoolExecutor能力揭秘)

python版本的并行运行,极致使用CPU
原创
博文更新于 2025.05.07 ·
1130 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

Encoder和Decoder的区别

编码器和解码器的区别
原创
博文更新于 2025.05.04 ·
1882 阅读 ·
29 点赞 ·
1 评论 ·
19 收藏

FastApi快速实践

python+FastAPI 1分钟快速入手
原创
博文更新于 2025.05.04 ·
596 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

批归一化(Batch Normalization)与层归一化(Layer Normalization)的区别与联系

与 Batch Normalization(批归一化)的目标类似,都是为了加速训练并提高模型性能,但它们的归一化方式和应用场景有所不同。Layer Normalization 是对单个样本的所有特征进行归一化,而不是像 Batch Normalization 那样对整个 mini-batch 的每个特征进行归一化。Batch Normalization 还会对归一化后的数据进行缩放和平移,引入可学习的参数。Layer Normalization 还会对归一化后的数据进行缩放和平移,引入可学习的参数。
原创
博文更新于 2025.04.23 ·
1681 阅读 ·
20 点赞 ·
0 评论 ·
16 收藏

Python的线程、进程与协程

进程:进程是操作系统分配资源的基本单位,每个进程都有独立的内存空间,包含代码、数据和系统资源。进程之间相互隔离,一个进程崩溃不会影响其他进程。线程:线程是进程内的执行单元,一个进程可以包含多个线程。线程共享进程的内存空间和资源,因此线程间的通信比进程间更高效,但也更容易出现数据竞争等问题。
原创
博文更新于 2025.04.07 ·
1420 阅读 ·
18 点赞 ·
0 评论 ·
19 收藏

Bert论文解析

引入一种新的语言表示模型BERT,它源于Transformers的双向编码器表示。BEncoderRTBERT的原理简述——便捷性BERT旨在通过联合调节所有层中的左右上下文,从未标记文本中预训练深度双向表示。因此,只需一个额外的输出层即可对预训练的BERT模型进行微调,为各种任务(例如问答和语言推理)创建最先进的模型,而无需对特定任务的架构进行实质性修改。BERT的效果。
原创
博文更新于 2025.04.06 ·
1345 阅读 ·
30 点赞 ·
0 评论 ·
16 收藏
加载更多