Hi! I am an ML Research Scientist at the Arc Institute, where I build foundation models for perturbation prediction in single-cell biology. I obtained my Ph.D. in Computer Science at Purdue University, advised by Prof. Bruno Ribeiro, and in close collaboration with Prof. Haggai Maron. My research focuses on foundation models for structured data, with an emphasis on invariances to improve generalization on real-world biological data.
Most recent publications on Google Scholar. ‡ indicates equal contribution.
Predicting cellular responses to perturbation across diverse contexts with State
Abhinav K. Adduri, Dhruv Gautam, Beatrice Bevilacqua, Alishba Imran, Rohan Shah, Mohsen Naghipourfar, Noam Teyssier, Rajesh Ilango, Sanjay Nagaraj, Mingze Dong, Chiara Ricci-Tam, Christopher Carpenter, Vishvak Subramanyam, Aidan Winters, Sravya Tirukkovular, Jeremy Sullivan, Brian S. Plosky, Basak Eraslan, Nicholas D. Youngblut, Jure Leskovec, Luke A. Gilbert, Silvana Konermann, Patrick D. Hsu, Alexander Dobin, Dave P. Burke, Hani Goodarzi, Yusuf H. Roohani
bioRxiv 2025
Holographic Node Representations: Pre-training Task-Agnostic Node Embeddings
Beatrice Bevilacqua, Joshua Robinson, Jure Leskovec, Bruno Ribeiro
ICLR 2025
Granola: Adaptive Normalization for Graph Neural Networks
Moshe Eliasof‡, Beatrice Bevilacqua‡, Carola-Bibiane Schönlieb, Haggai Maron
NeurIPS 2024
Efficient Subgraph GNNs by Learning Effective Selection Policies
Beatrice Bevilacqua, Moshe Eliasof, Eli Meirom, Bruno Ribeiro, Haggai Maron
ICLR 2024
Neural Algorithmic Reasoning with Causal Regularisation
Beatrice Bevilacqua, Kyriacos Nikiforou, Borja Ibarz, Ioana Bica, Michela Paganini, Charles Blundell, Jovana Mitrovic, Petar Veličković
ICML 2023
Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries
Fabrizio Frasca‡, Beatrice Bevilacqua‡, Michael M. Bronstein, Haggai Maron
NeurIPS 2022, Oral (199 / 10,411 submissions)
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua‡, Fabrizio Frasca‡, Derek Lim‡, Balasubramaniam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael M. Bronstein, Haggai Maron
ICLR 2022, Spotlight (174 / 3391 submissions)
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua‡, Yangze Zhou‡, Bruno Ribeiro
ICML 2021, Long Talk (166 / 5,513 submissions)
Predicting cellular responses to perturbation across diverse contexts with State
Abhinav K. Adduri, Dhruv Gautam, Beatrice Bevilacqua, Alishba Imran, Rohan Shah, Mohsen Naghipourfar, Noam Teyssier, Rajesh Ilango, Sanjay Nagaraj, Mingze Dong, Chiara Ricci-Tam, Christopher Carpenter, Vishvak Subramanyam, Aidan Winters, Sravya Tirukkovular, Jeremy Sullivan, Brian S. Plosky, Basak Eraslan, Nicholas D. Youngblut, Jure Leskovec, Luke A. Gilbert, Silvana Konermann, Patrick D. Hsu, Alexander Dobin, Dave P. Burke, Hani Goodarzi, Yusuf H. Roohani
bioRxiv 2025
All In: Bridging Input Feature Spaces Towards Graph Foundation Models
Moshe Eliasof, Krishna Sri Ipsit Mantri, Beatrice Bevilacqua, Carola-Bibiane Schönlieb, Bruno Ribeiro
UniReps 2025
Zero-shot generalization of gnns over distinct attribute domains
Yangyi Shen, Jincheng Zhou, Beatrice Bevilacqua, Joshua Robinson, Charilaos Kanatsoulis, Jure Leskovec, Bruno Ribeiro
ICML 2025
Holographic Node Representations: Pre-training Task-Agnostic Node Embeddings
Beatrice Bevilacqua, Joshua Robinson, Jure Leskovec, Bruno Ribeiro
ICLR 2025
TRIX: A More Expressive Model for Zero-shot Domain Transfer in Knowledge Graphs
Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, Bruno Ribeiro
LoG 2024
Digraf: Diffeomorphic Graph-Adaptive Activation Function
Krishna Sri Ipsit Mantri, Xinzhi Wang, Carola-Bibiane Schönlieb, Bruno Ribeiro, Beatrice Bevilacqua‡, Moshe Eliasof‡
NeurIPS 2024
Granola: Adaptive Normalization for Graph Neural Networks
Moshe Eliasof‡, Beatrice Bevilacqua‡, Carola-Bibiane Schönlieb, Haggai Maron
NeurIPS 2024
Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products
Guy Bar-Shalom, Beatrice Bevilacqua, Haggai Maron
ICML 2024
Efficient Subgraph GNNs by Learning Effective Selection Policies
Beatrice Bevilacqua, Moshe Eliasof, Eli Meirom, Bruno Ribeiro, Haggai Maron
ICLR 2024
A Multi-Task Perspective for Link Prediction with New Relation Types and Nodes
Jincheng Zhou, Beatrice Bevilacqua, Bruno Ribeiro
NeurIPS GLFrontiers 2023
Neural Algorithmic Reasoning with Causal Regularisation
Beatrice Bevilacqua, Kyriacos Nikiforou, Borja Ibarz, Ioana Bica, Michela Paganini, Charles Blundell, Jovana Mitrovic, Petar Veličković
ICML 2023
Graph Positional Encoding via Random Feature Propagation
Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, Haggai Maron
ICML 2023
Causal Lifting and Link Prediction
Leonardo Cotta, Beatrice Bevilacqua, Nesreen Ahmed, Bruno Ribeiro
The Royal Society A
A Generalist Neural Algorithmic Learner
Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert Csordás, Andrew Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, Andreea Deac, Beatrice Bevilacqua, Yaroslav Ganin, Charles Blundell, Petar Veličković
LoG 2022, Spotlight
Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries
Fabrizio Frasca‡, Beatrice Bevilacqua‡, Michael M. Bronstein, Haggai Maron
NeurIPS 2022, Oral (199 / 10,411 submissions)
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua‡, Fabrizio Frasca‡, Derek Lim‡, Balasubramaniam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael M. Bronstein, Haggai Maron
ICLR 2022, Spotlight (174 / 3391 submissions)
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua‡, Yangze Zhou‡, Bruno Ribeiro
ICML 2021, Long Talk (166 / 5,513 submissions)
Simulation-Based Evolutionary Optimization of Air Traffic Management
Alessandro Pellegrini, Pierangelo di Sanzo, Beatrice Bevilacqua, Gabriella Duca, Domenico Pascarella, Roberto Palumbo, Juan Josè Ramos, Miquel Àngel Piera, Gabriella Gigante
IEEE Access 2020