Papers by Mukaffi Bin Moin

arXiv (Cornell University), May 12, 2024
Our research focuses on the critical field of early diagnosis of disease by examining retinal blo... more Our research focuses on the critical field of early diagnosis of disease by examining retinal blood vessels in fundus images. While automatic segmentation of retinal blood vessels holds promise for early detection, accurate analysis remains challenging due to the limitations of existing methods, which often lack discrimination power and are susceptible to influences from pathological regions. Our research in fundus image analysis advances deep learning-based classification using eight pre-trained CNN models. To enhance interpretability, we utilize Explainable AI techniques such as Grad-CAM, Grad-CAM++, Score-CAM, Faster Score-CAM, and Layer CAM. These techniques illuminate the decision-making processes of the models, fostering transparency and trust in their predictions. Expanding our exploration, we investigate ten models, including TransUNet with ResNet backbones, Attention U-Net with DenseNet and ResNet backbones, and Swin-UNET. Incorporating diverse architectures such as ResNet50V2, ResNet101V2, ResNet152V2, and DenseNet121 among others, this comprehensive study deepens our insights into attention mechanisms for enhanced fundus image analysis. Among the evaluated models for fundus image classification, ResNet101 emerged with the highest accuracy, achieving an impressive 94.17%. On the other end 1

arXiv (Cornell University), May 12, 2024
Numerous applications have resulted from the automation of agricultural disease segmentation usin... more Numerous applications have resulted from the automation of agricultural disease segmentation using deep learning techniques. However, when applied to new conditions, these applications frequently face the difficulty of overfitting, resulting in lower segmentation performance. In the context of potato farming, where diseases have a large influence on yields, it is critical for the agricultural economy to quickly and properly identify these diseases. Traditional data augmentation approaches, such as rotation, flip, and translation, have limitations and frequently fail to provide strong generalization results. To address these issues, our research employs a novel approach termed as PotatoGANs. In this novel data augmentation approach, two types of Generative Adversarial Networks (GANs) are utilized to generate synthetic potato disease images from healthy potato images. This approach not only expands the dataset but also adds variety, which helps to enhance model generalization. Using the Inception score as a measure, our experiments show the better quality and realisticness of the images created by PotatoGANs, emphasizing their capacity to resemble real disease images closely. The CycleGAN model outperforms the Pix2Pix GAN model in terms of image quality, as evidenced by its higher IS scores CycleGAN achieves higher Inception scores (IS) of 1.2001 and 1.0900 for black scurf and common scab, respectively. This synthetic data can significantly improve the training of large neural networks. It also reduces data collection costs while enhancing data diversity and generalization capabilities. Our work improves interpretability by combining three gradient-based Explainable AI algorithms (GradCAM, GradCAM++, and ScoreCAM) with three distinct CNN architectures (DenseNet169, Resnet152 V2, InceptionResNet V2) for potato disease classification. This comprehensive technique improves interpretability with insightful visualizations and provides detailed insights into the network's decision-making. The goal of combining several CNN designs and explanation techniques is to maximize interpretability while offering an in-depth understanding of the model's behavior. We further employ this extended dataset in conjunction with Detectron2 to segment two classes of potato disease images, with the primary goal of enhancing the overall performance of our model. Furthermore, in the ResNeXt-101

arXiv (Cornell University), May 5, 2024
Natural Language Inference (NLI) is a cornerstone of Natural Language Processing (NLP), providing... more Natural Language Inference (NLI) is a cornerstone of Natural Language Processing (NLP), providing insights into the entailment relationships between text pairings. It is a critical component of Natural Language Understanding (NLU), demonstrating the ability to extract information from spoken or written interactions. NLI is mainly concerned with determining the entailment relationship between two statements, known as the premise and hypothesis. When the premise logically implies the hypothesis, the pair is labeled "entailment". If the hypothesis contradicts the premise, the pair receives the "contradiction" label. When there is insufficient evidence to establish a connection, the pair is described as "neutral". Despite the success of Large Language Models (LLMs) in various tasks, their effectiveness in NLI remains constrained by issues like low-resource domain accuracy, model overconfidence, and difficulty in capturing human judgment disagreements. This study addresses the underexplored area of evaluating LLMs in low-resourced languages such as Bengali. Through a comprehensive evaluation, we assess the performance of prominent LLMs and state-of-the-art (SOTA) models in Bengali NLP tasks, focusing on natural language inference. Utilizing the XNLI dataset, we conduct zero-shot and few-shot evaluations, comparing LLMs like GPT-3.5 Turbo and Gemini 1.5 Pro with models such as BanglaBERT, Bangla BERT Base, DistilBERT, mBERT, and sahajBERT. Our findings reveal that while LLMs can achieve comparable or superior performance to fine-tuned SOTA models in few-shot scenarios, further research is necessary to enhance our understanding of LLMs in languages with modest resources like Bengali. This study underscores the importance of continued efforts in exploring LLM capabilities across diverse linguistic contexts.

arXiv (Cornell University), May 7, 2024
Lung and colon cancer are serious worldwide health challenges that require early and precise iden... more Lung and colon cancer are serious worldwide health challenges that require early and precise identification to reduce mortality risks. However, diagnosis, which is mostly dependent on histopathologists' competence, presents difficulties and hazards when expertise is insufficient. While diagnostic methods like imaging and blood markers contribute to early detection, histopathology remains the gold standard, although timeconsuming and vulnerable to inter-observer mistakes. Limited access to high-end technology further limits patients' ability to receive immediate medical care and diagnosis. Recent advances in deep learning have generated interest in its application to medical imaging analysis, specifically the use of histopathological images to diagnose lung and colon cancer. The goal of this investigation is to use and adapt existing pre-trained CNN-based models, such as Xception, DenseNet201, ResNet101, InceptionV3, DenseNet121, DenseNet169, ResNet152, and InceptionResNetV2, to enhance classification through better augmentation strategies. The results show tremendous progress, with all eight models reaching impressive accuracy ranging from 97% to 99%. Furthermore, attention visualization techniques such as GradCAM, GradCAM++, ScoreCAM, Faster Score-CAM, and LayerCAM, as well as Vanilla Saliency and SmoothGrad, are used to provide insights into the models' classification decisions, thereby improving interpretability and understanding of malignant and benign image classification. Our research implementations are open to the public at:

arXiv (Cornell University), Nov 17, 2023
The Bangla linguistic variety is a fascinating mix of regional dialects that adds to the cultural... more The Bangla linguistic variety is a fascinating mix of regional dialects that adds to the cultural diversity of the Bangla-speaking community. Despite extensive study into translating Bangla to English, English to Bangla, and Banglish to Bangla in the past, there has been a noticeable gap in translating Bangla regional dialects into standard Bangla. In this study, we set out to fill this gap by creating a collection of 32,500 sentences, encompassing Bangla, Banglish, and English, representing five regional Bangla dialects. Our aim is to translate these regional dialects into standard Bangla and detect regions accurately. To achieve this, we proposed models known as mT5 and BanglaT5 for translating regional dialects into standard Bangla. Additionally, we employed mBERT and Bangla-bert-base to determine the specific regions from where these dialects originated. Our experimental results showed the highest BLEU score of 69.06 for Mymensingh regional dialects and the lowest BLEU score of 36.75 for Chittagong regional dialects. We also observed the lowest average word error rate of 0.1548 for Mymensingh regional dialects and the highest of 0.3385 for Chittagong regional dialects. For region detection, we achieved an accuracy of 85.86% for Bangla-bert-base and 84.36% for mBERT. This is the first large-scale investigation of Bangla regional dialects to Bangla machine translation. We believe our findings will not only pave the way for future work on Bangla regional dialects to Bangla machine translation, but will also be useful in solving similar language-related challenges in low-resource language conditions.

2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC)
Potatoes are among the major vegetables in agricultural regions, and it is farmed and utilized al... more Potatoes are among the major vegetables in agricultural regions, and it is farmed and utilized all over the world. Potatoes are a high-protein food with several health benefits, but there are numerous diseases associated with potatoes that hamper production. In this research, we developed a hybrid approach that employs image processing and combines MobileNet V2 with LSTM, GRU, and Bidirectional LSTM to evaluate potato disease classes known as Black Scurf, Common Scab, Blackleg, Dry Rot, Pink Rot, Healthy, and Miscellaneous. We examined the outcomes of each architecture after applying it independently to determine the optimal architecture configuration for categorizing potato diseases. In terms of accuracy, the results show that the hybrid MobileNet V2-GRU with Stochastic Gradient Descent optimizer strategy exceeds the other alternative. On the test dataset, we achieved 99% accuracy.
Uploads
Papers by Mukaffi Bin Moin