Papers by Anne Blach Overgaard

Trees are of vital importance for ecosystem functioning and services at local to global scales, y... more Trees are of vital importance for ecosystem functioning and services at local to global scales, yet we still lack a detailed overview of the global patterns of tree diversity and the underlying drivers, particularly the imprint of paleoclimate. Here, we present the high-resolution (110 km) worldwide mapping of tree species richness, functional and phylogenetic diversities based on ∼7 million quality-assessed occurrences for 46,752 tree species (80.5% of the estimated total number of tree species), and subsequent assessments of the influence of paleo-climate legacies on these patterns. All three tree diversity dimensions exhibited the expected latitudinal decline. Contemporary climate emerged as the strongest driver of all diversity patterns, with Pleistocene and deeper-time (>107 years) paleoclimate as important co-determinants, and, notably, with past cold and drought stress being linked to reduced current diversity. These findings demonstrate that tree diversity is affected by ...

Nature, Oct 1, 2018
The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications... more The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our f...

BMC biology, Mar 7, 2017
Understanding the patterns of biodiversity distribution and what influences them is a fundamental... more Understanding the patterns of biodiversity distribution and what influences them is a fundamental pre-requisite for effective conservation and sustainable utilisation of biodiversity. Such knowledge is increasingly urgent as biodiversity responds to the ongoing effects of global climate change. Nowhere is this more acute than in species-rich tropical Africa, where so little is known about plant diversity and its distribution. In this paper, we use RAINBIO - one of the largest mega-databases of tropical African vascular plant species distributions ever compiled - to address questions about plant and growth form diversity across tropical Africa. The filtered RAINBIO dataset contains 609,776 georeferenced records representing 22,577 species. Growth form data are recorded for 97% of all species. Records are well distributed, but heterogeneous across the continent. Overall, tropical Africa remains poorly sampled. When using sampling units (SU) of 0.5°, just 21 reach appropriate collectio...

PhytoKeys, 2016
The tropical vegetation of Africa is characterized by high levels of species diversity but is und... more The tropical vegetation of Africa is characterized by high levels of species diversity but is undergoing important shifts in response to ongoing climate change and increasing anthropogenic pressures. Although our knowledge of plant species distribution patterns in the African tropics has been improving over the years, it remains limited. Here we present RAINBIO, a unique comprehensive mega-database of georeferenced records for vascular plants in continental tropical Africa. The geographic focus of the database is the region south of the Sahel and north of Southern Africa, and the majority of data originate from tropical forest regions. RAINBIO is a compilation of 13 datasets either publicly available or personal ones. Numerous in depth data quality checks, automatic and manual via several African flora experts, were undertaken for georeferencing, standardization of taxonomic names and identification and merging of duplicated records. The resulting RAINBIO data allows exploration and extraction of distribution data for 25,356 native tropical African vascular plant species, which represents ca. 89% of all known plant species in the area of interest. Habit information is also provided for 91% of these species.

Scientific reports, Jan 27, 2016
To what extent deep-time dispersal limitation shapes present-day biodiversity at broad spatial sc... more To what extent deep-time dispersal limitation shapes present-day biodiversity at broad spatial scales remains elusive. Here, we compiled a continental dataset on the distributions of African lizard species in the reptile subfamily Agaminae (a relatively young, Neogene radiation of agamid lizards which ancestors colonized Africa from the Arabian peninsula) and tested to what extent historical colonization and dispersal limitation (i.e. accessibility from areas of geographic origin) can explain present-day species richness relative to current climate, topography, and climate change since the late Miocene (~10 mya), the Pliocene (~3 mya), and the Last Glacial Maximum (LGM, 0.021 mya). Spatial and non-spatial multi-predictor regression models revealed that time-limited dispersal via arid corridors is a key predictor to explain macro-scale patterns of species richness. In addition, current precipitation seasonality, current temperature of the warmest month, paleo-temperature changes sinc...
Botanical Journal of the Linnean Society, 2016
In addition, we also obtained data through literature surveys as well as from private databases a... more In addition, we also obtained data through literature surveys as well as from private databases and observations held by field botanists (see acknowledgements). For very conspicuous species (Elaeis guineensis, Hyphaene petersiana, Phoenix reclinata) we used Google Earth satellite imagery to achieve more palm localities 1,2. We have accessed the following websites to retrieve information on palm occurrences: www.zimbabweflora.co.zw (last accessed March 2009

Scientific Reports, 2015
Palms are keystone species in tropical ecosystems and provide essential ecosystem services to rur... more Palms are keystone species in tropical ecosystems and provide essential ecosystem services to rural people worldwide. However, many palm species are threatened by habitat loss and over-exploitation. Furthermore, palms are sensitive to climate and thus vulnerable to future climate changes. Here, we provide a first quantitative assessment of the future risks to the African palm flora, finding that African palm species on average may experience a decline in climatic suitability in >70% of their current ranges by 2080. This suitability loss may, however, be almost halved if migration to nearby climatically suitable sites succeeds. Worryingly, 42% of the areas with 80-100% of species losing climate suitability are also characterized by high human population density (HPD). By 2080, >90% of all African palm species' ranges will likely occur at HPDs leading to increased risks of habitat loss and overexploitation. Additionally, up to 87% of all species are predicted to lose climatic suitability within current protected areas (PAs) by 2080. In summary, a major plant component of tropical ecosystems and provider of ecosystem services to rural populations will face strongly increased pressures from climate change and human populations in the near future.

Journal of Ethnopharmacology, 2015
This study is the first to demonstrate the breadth and patterns of the medicinal applications of ... more This study is the first to demonstrate the breadth and patterns of the medicinal applications of African palms. It sheds light on species with the potential to provide new therapeutic agents for use in biomedicine; and links the gap between traditional use of palms and pharmacological evaluation for the beneficial effects of palm products on human health. Last but not least, the study provides recommendations for the areas that should be targeted in future ethno-botanical surveys. The primary objective of this survey was to assemble all available ethno-medicinal data on African palms, and investigate patterns of palm uses in traditional medicine; and highlight possible under-investigated areas. References were found through bibliographic searches using several sources including PubMed, Embase, and Google Scholar and search engines of the State and University Libraries of Aarhus, National Library of Denmark and Copenhagen University Libraries, Harvard University Libraries, and the Mertz Library. Information about ethno-medicinal uses of palms was extracted and digitized in a database. Additionally, we used an African palm distribution database to compute the proportion of palm species that have been used for medicinal purposes in each country. We found 782 medicinal uses mentioned in 156 references. At least 23 different palm species (some remained unidentified) were used medicinally in 35 out of Africa׳s 48 countries. The most commonly used species were Elaeis guineensis, Phoenix dactylifera, Cocos nucifera, and Borassus aethiopum. Medicinal uses were in 25 different use categories of which the most common ones were Infections/Infestations and Digestive System Disorders. Twenty-four different parts of the palms were used in traditional medicine, with most of the uses related to fruit (and palm oil), root, seed and leaf. Palms were used in traditional medicine mostly without being mixed with other plants, and less commonly in mixtures, sometimes in mixture with products of animal origin. Future ethno-botanical surveys should be directed at the central African region, because palm species richness (and plant species richness in general) is particularly high in this area, and only few ethno-botanical studies available have focused on this region. The wide time span covered by our database (3500 years) shows that African palms have been used medicinally by many societies across the continent from time immemorial until today. Most medicinal use records for African palms were found in two categories that relate to most prevailing diseases and disorders in the region. By analyzing ethno-medicinal studies in one database we were able to demonstrate the value of palms in traditional medicine, and provide recommendations for the areas that should be targeted in future ethno-botanical surveys.
Beyond Kyoto: Addressing the Challenges of Climate Change - Science Meets Industry, Policy and Public, 2009
Abstract. Africa is the most vulnerable continent to future climate change. Profound changes are ... more Abstract. Africa is the most vulnerable continent to future climate change. Profound changes are projected for southwestern Africa with increased drying, notably with delayed onset of the rainy season in September-November, and temperature increases in all seasons. The projected climate changes combined with land-use changes are thought to constitute the main threats to biodiversity in the 21st century. To be able to predict the potential impact on biodiversity, it is crucial to achieve a better insight into the controls of contemporary ...
Global Ecology and Biogeography, 2011
Aim To assess the influence of natural environmental factors and historic and current anthropogen... more Aim To assess the influence of natural environmental factors and historic and current anthropogenic processes as determinants of vegetation distributions at a continental scale. Location Africa. Methods Boosted regression trees (BRTs) were used to model the distribution of African vegetation types, represented by remote-sensing-based land-cover (LC) types, as a function of environmental factors. The contribution of each predictor variable to the best models and the accuracy of all models were assessed. Subsequently, to test for ...

Ecography, 2000
Most of the Earth's biodiversity resides in the tropics. However, a comprehensive understanding o... more Most of the Earth's biodiversity resides in the tropics. However, a comprehensive understanding of which factors control range limits of tropical species is still lacking. Climate is often thought to be the predominant range-determining mechanism at large spatial scales. Alternatively, species' ranges may be controlled by soil or other environmental factors, or by non-environmental factors such as biotic interactions, dispersal barriers, intrinsic population dynamics, or timelimited expansion from place of origin or past refugia. How species ranges are controlled is of key importance for predicting their responses to future global change. Here, we use a novel implementation of species distribution modelling (SDM) to assess the degree to which African continental-scale species distributions in a keystone tropical group, the palms (Arecaceae), are controlled by climate, non-climatic environmental factors, or non-environmental spatial constraints. A comprehensive data set on African palm species occurrences was assembled and analysed using the SDM algorithm Maxent in combination with climatic and non-climatic environmental predictors (habitat, human impact), as well as spatial eigenvector mapping (spatial filters). The best performing models always included spatial filters, suggesting that palm species distributions are always to some extent limited by non-environmental constraints. Models which included climate provided significantly better predictions than models that included only non-climatic environmental predictors, the latter having no discernible effect beyond the climatic control. Hence, at the continental scale, climate constitutes the only strong environmental control of palm species distributions in Africa. With regard to the most important climatic predictors of African palm distributions, water-related factors were most important for 25 of the 29 species analysed. The strong response of palm distributions to climate in combination with the importance of nonenvironmental spatial constraints suggests that African palms will be sensitive to future climate changes, but that their ability to track suitable climatic conditions will be spatially constrained.

Biotropica, 2011
Integrating phylogenetic data into macroecological studies of biodiversity patterns may complemen... more Integrating phylogenetic data into macroecological studies of biodiversity patterns may complement the information provided by present-day spatial patterns. In the present study, we used range map data for all Geonoma (Arecaceae) species to assess whether Geonoma species composition forms spatially coherent floristic clusters. We then evaluated the extent to which the spatial variation in species composition reflects present-day environmental variation vs. nonenvironmental spatial effects, as expected if the pattern reflects historical biogeography. We also examined the degree of geographic structure in the Geonoma phylogeny. Finally, we used a dated phylogeny to assess whether species richness within the floristic clusters was constrained by a specific historical biogeographic driver, namely time-for-diversification. A cluster analysis identified six spatially coherent floristic clusters, four of which were used to reveal a significant geographic phylogenetic structure. Variation partitioning analysis showed that 56 percent of the variation in species composition could be explained by spatial variables alone, consistent with historical factors having played a major role in generating the Geonoma diversity pattern. To test for a time-for-diversification effect, we correlated four different species richness measures with the diversification time of the earliest large lineage that is characteristic of each cluster. In support of this hypothesis, we found that geographic areas with higher richness contained older radiations. We conclude that current geographic diversity patterns in Geonoma reflect the present-day climate, but to a larger extent are related to nonenvironmental spatial constraints linked to colonization time, dispersal limitation, and geological history, followed by within-area evolutionary diversification.

Past climatic changes have caused extinction, speciation and range dynamics, but assessing the in... more Past climatic changes have caused extinction, speciation and range dynamics, but assessing the influence of past multimillion-year climatic imprints on present-day biodiversity patterns remains challenging. We analyzed a new continental-scale dataset to examine the importance of paleoclimatic effects on current gradients in African palm richness patterns. Using climate reconstructions from the late Miocene (~ 10 mya), the Pliocene (~ 3 mya) and the Last Glacial Maximum (0.021 mya), we found that African palm diversity patterns exhibit pronounced historical legacies related to long-term climate change. Notably, pre-Pleistocene paleoprecipitation variables differentially affected current diversity patterns of palms grouped by contrasting habitat requirements. Accounting for present-day environment, rainforest palms exhibit greater species richness in localities where Pliocene precipitation was relatively high, whereas open-habitat palms show higher species richness in areas of relatively low precipitation during the Miocene Epoch. Our results demonstrate that diversity-climate relationships among African palm species include multimillion-year lagged dynamics, i.e., with historical legacies persisting across much longer time periods than commonly recognized.
Nordic Journal of Botany, 2013
Uploads
Papers by Anne Blach Overgaard