AgentScope示例应用:多智能体对话

【免费下载链接】agentscope 【免费下载链接】agentscope 项目地址: https://gitcode.com/GitHub_Trending/ag/agentscope

引言:为什么需要多智能体对话?

在人工智能快速发展的今天,单一智能体已经难以满足复杂任务的需求。想象一下这样的场景:一个项目团队需要讨论技术方案,不同专业背景的成员各抒己见,最终达成共识。这正是多智能体对话要解决的问题——让多个AI智能体像真实团队成员一样进行有意义的交流。

AgentScope作为面向开发者的多智能体编程框架,提供了强大的多智能体对话能力。本文将深入探讨如何使用AgentScope构建高效的多智能体对话系统。

核心概念解析

消息中心(MsgHub)

MsgHub是AgentScope中管理多智能体对话的核心组件,它提供了以下关键功能:

mermaid

多智能体格式化器(MultiAgent Formatter)

与单智能体对话不同,多智能体对话需要使用专门的格式化器来处理多个参与者的消息:

格式化器类型 适用场景 特点
DashScopeChatFormatter 单智能体对话 使用role字段区分用户和智能体
DashScopeMultiAgentFormatter 多智能体对话 使用name字段区分不同智能体

实战:构建多角色对话系统

基础配置

首先,我们需要设置环境并导入必要的模块:

import asyncio
import os
from agentscope.agent import ReActAgent
from agentscope.formatter import DashScopeMultiAgentFormatter
from agentscope.message import Msg
from agentscope.model import DashScopeChatModel
from agentscope.pipeline import MsgHub, sequential_pipeline

创建个性化智能体

每个智能体都应该有独特的个性和背景故事:

def create_participant_agent(
    name: str,
    age: int,
    career: str,
    character: str,
) -> ReActAgent:
    """创建具有特定属性的参与者智能体"""
    return ReActAgent(
        name=name,
        sys_prompt=(
            f"You're a {age}-year-old {career} named {name} and you're "
            f"a {character} person. Speak naturally and engage in "
            f"meaningful conversations with other participants."
        ),
        model=DashScopeChatModel(
            model_name="qwen-max",
            api_key=os.environ["DASHSCOPE_API_KEY"],
            stream=True,
        ),
        formatter=DashScopeMultiAgentFormatter(),
    )

构建对话工作流

使用MsgHub管理多智能体对话:

async def multi_agent_conversation() -> None:
    """运行多智能体对话工作流"""
    
    # 创建具有不同特征的多个参与者智能体
    alice = create_participant_agent("Alice", 30, "teacher", "friendly")
    bob = create_participant_agent("Bob", 14, "student", "rebellious")
    charlie = create_participant_agent("Charlie", 28, "doctor", "thoughtful")
    diana = create_participant_agent("Diana", 35, "engineer", "practical")

    # 在消息中心中创建对话
    async with MsgHub(
        participants=[alice, bob, charlie],
        announcement=Msg(
            "system",
            "Welcome to the discussion! Please introduce yourselves "
            "and share your thoughts on AI technology.",
            "system",
        ),
    ) as hub:
        
        # 顺序执行对话
        await sequential_pipeline([alice, bob, charlie])
        
        # 动态添加新参与者
        print("##### Diana joins the conversation #####")
        hub.add(diana)
        await hub.broadcast(
            Msg("system", "Diana has joined our discussion.", "system")
        )
        await diana()
        
        # 动态移除参与者
        print("##### Bob leaves the conversation #####")
        hub.delete(bob)
        await hub.broadcast(
            Msg("bob", "I need to go now. It was great talking with everyone!", "assistant")
        )
        
        # 继续剩余参与者的对话
        await alice()
        await charlie()
        await diana()

# 运行对话
asyncio.run(multi_agent_conversation())

高级特性与应用场景

1. 实时参与者管理

AgentScope支持动态的参与者管理,这在以下场景中特别有用:

mermaid

2. 消息广播机制

MsgHub的广播机制确保所有参与者都能收到相关消息:

async def advanced_broadcast_example():
    """高级广播功能示例"""
    async with MsgHub(participants=[alice, bob, charlie]) as hub:
        # 选择性广播
        await hub.broadcast(
            Msg("moderator", "Important announcement for everyone!", "system")
        )
        
        # 定向消息(通过设置特定接收者)
        # 在实际应用中可以通过自定义逻辑实现

3. 内存管理

每个智能体都有独立的内存系统,记录对话历史:

async def check_memory_example():
    """检查智能体内存示例"""
    print("Alice的记忆内容:")
    for msg in await alice.memory.get_memory():
        print(f"{msg.name}: {msg.get_text_content()}")
    
    print("\nBob的记忆内容:")
    for msg in await bob.memory.get_memory():
        print(f"{msg.name}: {msg.get_text_content()}")

性能优化建议

1. 模型配置优化

# 使用共享模型实例提高性能
shared_model = DashScopeChatModel(
    model_name="qwen-max",
    api_key=os.environ["DASHSCOPE_API_KEY"],
    stream=True,
)

shared_formatter = DashScopeMultiAgentFormatter()

# 为所有智能体使用相同的模型和格式化器实例
alice = ReActAgent(
    name="Alice",
    sys_prompt="...",
    model=shared_model,
    formatter=shared_formatter,
    memory=InMemoryMemory(),
)

2. 异步执行优化

async def optimized_conversation():
    """优化后的对话执行"""
    agents = [alice, bob, charlie, diana]
    
    # 使用fanout管道进行并行执行
    from agentscope.pipeline import fanout_pipeline
    
    results = await fanout_pipeline(
        agents,
        Msg("system", "Please share your opinion simultaneously.", "system"),
        enable_gather=True
    )
    
    # 处理并行执行结果
    for agent, result in zip(agents, results):
        print(f"{agent.name}: {result.get_text_content()}")

实际应用案例

案例1:技术方案讨论会

async def tech_discussion():
    """技术方案讨论会示例"""
    # 创建不同技术背景的专家
    backend_expert = create_participant_agent(
        "BackendExpert", 32, "backend developer", "technical"
    )
    frontend_expert = create_participant_agent(
        "FrontendExpert", 28, "frontend developer", "creative"
    )
    product_manager = create_participant_agent(
        "ProductManager", 35, "product manager", "strategic"
    )
    
    async with MsgHub(
        participants=[backend_expert, frontend_expert, product_manager],
        announcement=Msg(
            "system",
            "Discuss the technical architecture for our new microservices platform. "
            "Consider scalability, maintainability, and development efficiency.",
            "system",
        ),
    ):
        await sequential_pipeline([
            product_manager,  # 首先由产品经理提出需求
            backend_expert,   # 后端专家给出技术方案
            frontend_expert,  # 前端专家提出界面设计考虑
            backend_expert,   # 后端专家回应前端需求
            product_manager   # 产品经理总结讨论
        ])

案例2:多语言翻译协作

async def multilingual_translation():
    """多语言翻译协作示例"""
    # 创建不同语言的翻译专家
    english_expert = create_participant_agent(
        "EnglishExpert", 30, "translator", "precise"
    )
    chinese_expert = create_participant_agent(
        "ChineseExpert", 32, "translator", "cultural"
    )
    japanese_expert = create_participant_agent(
        "JapaneseExpert", 28, "translator", "detailed"
    )
    
    async with MsgHub(participants=[
        english_expert, chinese_expert, japanese_expert
    ]):
        # 协作翻译流程
        await english_expert()
        await chinese_expert()
        await japanese_expert()
        await english_expert()  # 最终校对

最佳实践与注意事项

1. 智能体角色设计

角色属性 设计建议 示例
姓名 使用有意义的名称 "TechLead", "DesignExpert"
年龄 符合角色背景 25-45岁之间的专业人士
职业 明确专业领域 "软件工程师", "产品设计师"
性格 体现对话风格 "analytical", "creative", "practical"

2. 对话流程控制

# 良好的流程控制示例
async def well_structured_conversation():
    """结构良好的对话示例"""
    async with MsgHub(participants=agents) as hub:
        # 阶段1: 自我介绍
        await hub.broadcast(Msg("system", "Phase 1: Self-introduction", "system"))
        await sequential_pipeline(agents)
        
        # 阶段2: 主题讨论
        await hub.broadcast(Msg("system", "Phase 2: Topic Discussion", "system"))
        for _ in range(2):  # 进行两轮讨论
            await sequential_pipeline(agents)
        
        # 阶段3: 总结
        await hub.broadcast(Msg("system", "Phase 3: Conclusion", "system"))
        await sequential_pipeline(agents)

3. 错误处理与重试机制

async def robust_conversation():
    """健壮的对话处理示例"""
    max_retries = 3
    for attempt in range(max_retries):
        try:
            async with MsgHub(participants=agents) as hub:
                await sequential_pipeline(agents)
            break  # 成功完成,退出重试循环
        except Exception as e:
            print(f"Attempt {attempt + 1} failed: {e}")
            if attempt == max_retries - 1:
                raise  # 最后一次尝试仍然失败,抛出异常
            await asyncio.sleep(2)  # 等待后重试

总结与展望

AgentScope的多智能体对话功能为构建复杂的AI协作系统提供了强大基础。通过MsgHub的消息管理、多智能体格式化器的智能提示构建,以及灵活的管道系统,开发者可以轻松创建各种多智能体应用场景。

未来,随着AgentScope的持续发展,我们可以期待更多高级功能,如:

  • 更精细的对话状态管理
  • 增强的上下文理解能力
  • 实时协作和协调机制
  • 更强大的异常处理和恢复能力

多智能体对话不仅是技术挑战,更是开启AI协作新纪元的钥匙。通过AgentScope,每个开发者都有机会构建出真正智能、协作的AI系统,推动人工智能向更高层次发展。

开始你的多智能体对话之旅吧,探索AI协作的无限可能!

【免费下载链接】agentscope 【免费下载链接】agentscope 项目地址: https://gitcode.com/GitHub_Trending/ag/agentscope

Logo

Agent 垂直技术社区,欢迎活跃、内容共建。

更多推荐