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Abstract

The paper introduces a novel representation for
Generalized Planning (GP) problems, and their so-
lutions, as C++ programs. Our C++ representa-
tion allows to formally proving the termination of
generalized plans, and to specifying their asymp-
totic complexity w.r.t. the number of world objects.
Characterizing the complexity of C++ generalized
plans enables the application of a combinatorial
search that enumerates the space of possible GP so-
lutions in order of complexity. Experimental results
show that our implementation of this approach,
which we call BFGP++, outperforms the previous
GP as heuristic search approach for the computa-
tion of generalized plans represented as compiler-
styled programs. Last but not least, the execution of
a C++ program on a classical planning instance is
a deterministic grounding-free and search-free pro-
cess, so our C++ representation allows us to auto-
matically validate the computed solutions on large
test instances of thousands of objects, where off-
the-shelf classical planners get stuck either in the
pre-processing or in the search.

1 Introduction

Automated planning has not achieved the level of integra-
tion with common programming languages, like C, JAVA,
or PYTHON, that is achieved by other forms of problem
solving such as constraint satisfaction or operational re-
search [Schulte et al., 2010; Prud’homme et al., 2014; Perron
and Furnon, 2019]. An important reason is the low-level rep-
resentations traditionally handled in planning [Geffner, 2003;
Rintanen, 2015]. Since the early 70’s, STRIPS is the most
popular representation language for research in automated
planning [Fikes and Nilsson, 1971]. Even today, STRIPS
is an essential fragment of PDDL [Haslum er al., 2019],
the input language of the International Planning Competi-
tion, and most planners support the STRIPS features. In
spite of its popularity, the STRIPS representation is too low-
level for many interesting applications [Smith et al., 2008;
Rintanen, 2015]; STRIPS limits representation to Boolean
state variables, and Boolean constraints, and focuses compu-
tation on plans represented as sequences of ground actions.

Recent advances in planning as heuristic search [Frances,
2017, Say et al., 2017; Scala et al., 2020], and in plan-
ning as satisfiability [Bryce et al., 2015; Scala et al., 2016;
Rintanen, 20171, show that handling more expressive prob-
lem representations does not necessarily increase planning
complexity. On the other hand, advances in generalized plan-
ning (GP) are producing effective algorithmic solution rep-
resentations for (possibly infinite) sets of planning instances
that share common structure [Schmid and Wysotzki, 2000;
Winner and Veloso, 2003; Hu and Levesque, 2011; Srivastava
et al., 2011a; Srivastava et al., 2011b; Hu and De Giacomo,
2011; Schmid and Kitzelmann, 2011; Belle and Levesque,
2016; Illanes and Mcllraith, 2019; Jiménez et al., 2019;
Segovia-Aguas et al., 2019; Frances et al., 2021].

This paper introduces a novel C++ representation for GP.
The contribution of the paper is three-fold:

1. Proving termination and characterizing complexity. Our
representation of GP solutions allows to formally prov-
ing the termination of generalized plans represented as
C++ programs. In addition, our C++ representation
reveals the asymptotic complexity of generalized plans
w.r.t the number of world objects. This is a relevant
topic beyond GP, since it allows defining formal upper-
bounds on the complexity of the (possibly infinite) set of
instances of a classical planning domain.

2. Improving the GP as heuristic search approach. By def-
inition, any generalized plan built by BFGP++ is termi-
nating. BFGP++ skips the costly check of infinite execu-
tions for candidate solutions and hence, it outperforms
the previous GP as heuristic search approach [Segovia-
Aguas et al., 2021; Segovia-Aguas et al., 2022al.

3. Validation of GP solutions at large instances. The gen-
eralized plans produced by BFGP++ are compilable with
standard programming tools, such as GCC g++, and ef-
ficiently validated in large instances (with thousands of
objects), where off-the-shelf planners get stuck either in
the pre-processing or in the search.

2 Preliminaries

2.1 Classical Planning

Following the formalization by Bonet and Geftner 2021, we
define a classical planning problem as a pair P = (D,TI),



where D is a first-order planning domain and 7 is the infor-
mation of the classical planning instance. The domain con-
tains the set of predicate symbols ¥ and the action schemes
with preconditions and effects, given by atoms p(z1, .. ., zk),
or their negations, where p € W is a predicate symbol and
each x; is a variable symbol representing an argument of
the action scheme. A classical planning instance is a tuple
7 = (Q, I, G) where () is the finite set of world objects. Last,
I and G respectively are the initial and goal configurations of
the world objects, and they are defined using ground atoms
p(o1,...,0x), or their negation.

The set of states, S(P), associated with a classical plan-
ning problem P, are the possible sets of ground atoms. The
initial state is s9 = I, and the subset of goal states Sg C
S(P), contains all the states s, € S(P) s.t. G C s4. The
state graph associated with a classical planning problem P
has as nodes the states S(P). Edges of this graph are defined
as follows: for each pair of states s € S(P) and s’ € S(P),
the graph has a directed edge (s, s’) iff there is a ground ac-
tion a that is applicable in s (i.e. whose preconditions hold in
s) and whose effects transform the state s into s’ = f(s,a) .

A solution to a classical planning problem P is a sequential
plan 7 = (a4, ..., a,) such that sy = I, the ground actions
a; are applicable in states s;_1, they produce successors s; =
f(si—1,a;), and the goal condition holds in the last reached
state, i.e. G C s,,.

2.2 Generalized Planning

This work builds on top of the inductive formalism for GP,
where a GP problem is a set of classical planning instances
that belong to the same domain D. In other words, they are
all represented with the same predicates and actions schemes,
but they may differ in the number of objects, and the initial/-
goal configuration of these objects.

Definition 1 (GP problem). A GP problem is a non-empty set
P ={P1,...,Pr} of T classical planning instances from a
given domain D.

The aim of GP is to compute algorithmic planning solu-
tions, a.k.a. generalized plans, that work for the given set of
planning problems. In this paper we focus on the computation
of GP solutions represented as C++ programs.

Definition 2 (GP solution). A generalized plan I solves a GP
problem P = {Py, ..., Pr} iff, for every classical planning
instance P, € P, 1 < t < T, the execution of Il on P,
denoted as exec(Il, P;) = (a1, ..., am), induces a classical
plan that solves P;.

3 A C++ Representation for Planning

We start explaining our C++ representation for propositional
classical planning and then we show that it naturally extends
to numeric planning and to GP. Our novel representation can
actually be implemented with any structured programming
language that supports If conditionals and For loops, as
well as Vectors (to store arrays that can change in size) and
Map containers (to store key-value pairs with unique keys);
the paper exemplifies our representation with the C++ lan-
guage, but other common programming languages, such as
Python or Java, could also be used.

map<vector<int>, bool> pred_clear;
map<vector<int>, bool> pred_handempty;
map<vector<int>, bool> pred_holding;
map<vector<int>, bool> pred_on;
map<vector<int>, bool> pred_ontable;

Figure 1: C++ declaration of the blocksworld first-order predicates.

pred.clear[{0}]=1;

pred-handempty [{}]=1;
pred-on[{0,1}]=1; predon([{1,2}]1=1;
pred-ontable[{2}]1=1;

Figure 2: Example of a three-block state from blocksworld (left),
and its corresponding C++ representation (right).

3.1 Classical planning problems as C++ programs

We exemplify our C++ representation in the classic
blocksworld [Slaney and Thiébaux, 2001], that consists of a
set of blocks, a table, and a robot hand. The domain defines
five first-order predicates, namely clear(?x), handempty(),
holding(?x), on(?x,?y), and ontable(?x). A block that has
nothing on it is clear, the robot hand can be empty or hold-
ing one block, and a block can be on top of another block
or on the table. The domain defines four action schemes,
stack(?x,?y), unstack(?x,?y), pick-up(?x) and put-down(?x)
for stacking (or unstacking) a block on top of another block
and putting down (or picking up) a block onto the table.

States. Each first-order predicate p(z1,...,2z5) € VU is
represented as a C++ map container s.t. the key for indexing
the map is a k-integer vector (where k is the predicate ar-
ity). The map stores a Boolean for each of the corresponding
ground predicates p(o1, . .., 0x) holding in the current state;
we follow the closed-world assumption so our C++ state
representation stores a maximum of Y, -, nx|2|* Boolean,
where ny, is the number of first-order predicates with arity k,
and || is the number of world objects!. Figure 1 shows the
C++ declaration of the blocksword predicates, while Figure 2
shows our C++ representation of a blocksworld state, where
there are three blocks that are stacked in a single tower.

Actions. Each action scheme is represented with a C++
Boolean function. The arguments of the function are those
of the action scheme, but in our C++ representation they act
as indexes to address the maps that are encoding the state.
Formally, an index z € Z is a finite domain variable ranging
the number of objects i.e., D, = [0,]2]). We inductively
define our C++ representation of an action scheme with the
following grammar:

'S ka0 mk|Q" is also the number of propositions that result
from grounding a STRIPS classical planning instance.



Action :=if(Condition,(s)){Ef fect(s)} return false;

Condition.(s) := (p(z1, ..., zk) == 0)&& Condition.(s) |

(p(z1,. .., z1) == 1)&& Condition.(s) |
true

Effect(s) := (p(z1,...,2k) =0); Effect(s) |
(p(z1,...,2) =1); Ef fect(s) |

return true;

where C'ondition,(s) is a conjunction of assertions over
predicates p(z1,...,2x) instantiated with the action argu-
ments, == denotes the equality operator, && is the logical
AND operator, = indicates a value assignment, and ; denotes
the end of an instruction. Likewise Effect(s) is a conjunction
of assignments representing the positive/negative effects of an
action scheme; (p(z1,...,2x) = 1) denotes a positive effect
while (p(#1, ..., 2,) = 0) denotes a negative effect.

Figure 4 shows our C++ representation of the unstack
action scheme from the blocksworld (Figure 3), that com-
pactly represents a set of state transitions, and that applies
to any blocksword instance, no matter the number of blocks.
Note that we represent actions as if they were always appli-
cable, but action effects only update the state iff the action
preconditions hold in the current state. This action model-
ing, common in RL, facilitates the specification of compact
algorithm-like solutions, and it preserves the original branch-
ing factor (successor states equal to their parents are ignored).

(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
teffect (and (holding ?x) (clear ?y)
(not (clear ?x)) (not (handempty)
(not (on ?x ?y)))))

Figure 3: PDDL representation of the unstack action scheme.

bool act_unstack (int x, int y) {

if (pred_on[{x,y}]==1 && pred_clear[{x}]==1
&& pred_handempty[{}]==1) {
pred_holding[{x}] = 1; pred_clear[{y}] = 1;
pred_clear([{x}] = 0; pred_handempty[{}] = 0;

pred_on[{x,y}] =0
return true;

}

return false;

}

Figure 4: Our C++ representation of the unstack action scheme.

Problems. Our C++ representation of a propositional plan-
ning problem is completed with the functions for representing
the initial state and the goals. These functions are formalized

as follows:

Init := (p(o1,...,08) = 1); Init |
Goals := return(Condition,(s));
Condition,(s) := (p(o1,...,0r) == 0)&& Condition,(s) |
(p(o1,...,0r) == 1)&& Condition,(s) |

true

The init function is a write-only void function that initial-
izes the C++ maps with the assignments for representing the
ground atoms p(o1, . .., 0k), that hold in the initial state. The
goal function is a read-only Boolean function that encodes, as
a partial state, the subset of goal states. Figure 5 shows the
init and goal C++ functions for representing the problem of
unstacking the three-block tower of Figure 2.

void init () {
pred_clear[{0}]=
pred_handempty [ {
pred_on[{0,1}]=1
pred_ontable[{2}
}

1;
11=1;

; pred_on[{1,2}]=1;
1=1;

bool goals
return (

) A

pred_ontable[{0}]==1

pred_ontable[{1l}]==1) &&
]==1

(
(
(
(pred_ontable[{2}

Figure 5: The init and goal C++ functions representing the planning
problem of unstacking the three-block tower of Figure 2.

3.2 Sequential plans as C++ programs

Our C++ representation of a sequential plan 7 uses program-
ming instructions for: (i), invoking the C++ Boolean function
that encodes an action scheme and (ii), incrementing/decre-
menting the value of an index. Formally:

m := Statement(s)

Statement(s) := a(z1,. .., zx); Statement(s) |

z 4 +; Statement(s) |

z — —; Statement(s) |
where a(z1,. .., 2k) is an action scheme instantiated with a
subset of indexes {z1,...,2,} C Z, and {z++, z—- | z € Z}
are the instructions to increment/decrement an index z € Z.
Indexes in Z are always initialized to zero. Figure 6 illustrates
the relation between an action scheme (i), its corresponding
action instantiated over indexes in Z and (ii), the correspond-
ing ground actions instantiated over the objects in 2.

Figure 7 illustrates our C++ representation of the
four-action sequential plan w = (unstack (b0,bl),
putdown (b0), unstack (bl,b2), putdown (bl) > for un-
stacking the three-block tower of Figure 2. The void
ONTABLE-SEQUENTIAL () program leverages two indexes,
Z = {21,292}, that are initialized to zero so they initially
point to the first object (block by in this case). After execut-
ing the first zo++ instruction, zo points to the second block,
b1, while z; still points to block by. This means that the first
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Figure 6: Relation between the action scheme unstack(?z, 7y) (i),
the action unstack(z1, z2) instantiated with indexes (z1, 22), and
(ii), the ground actions instantiated with the set of three blocks {2 =
{bo, b1, b2}. Indexes z1 and z2 are bound variables in [0, ..., |Q|)
and currently, they are indexing blocks by and b1, respectively.

act_unstack(zy, z,) instruction of the program in Figure 7
is actually executing the ground action unstack(bg,bs),
which corresponds to the first step of plan 7. Likewise,
the first act_putdown(z;) program instruction executes the
ground action putdown(by), i.e. the second step of the se-
quential plan 7. The second act_unstack(z;,z,) program
instruction is executing the ground action unstack(bs,bs),
since both z; and z5 are increased just before that instruction
is executed. Finally, the second act_putdown(z1) executes
the ground action putdown(b, ), which is the fourth and last
step of the sequential plan 7.

void ONTABLE-SEQUENTIAL () {

int z1=0, z2=0;

z24++;
act_unstack(zl,z2);
act_putdown (z1);

z1++;

z2++;
act_unstack(zl,z2);
act_putdown (z1);

Figure 7: C++ representation of a sequential plan for unstacking and
putting onto the table the three-block tower of Figure 2.

Theorem 1. Provided a number of indexes |Z| as large as
the largest arity of an action, our C++ representation for se-
quential plans preserves the original solution space.

Proof. Any sequential plan 7 can be rewritten as an equiva-
lent C++ procedure that first initializes indexes in Z to zero
and then, for each ground action a € T, it repeatedly applies
z++/z—-- instructions until the indexes address the objects of
the corresponding ground action a. O

3.3 Beyond propositional planning

Our C++ representation naturally supports planning with
numeric state variables, that can participate into the rep-
resentation of a classical planning problem as defined in
PDDL2.1 [Fox and Long, 2003]. To support the representa-
tion of numeric state variables, our C++ maps store integers
instead of Boolean. Likewise goals and action preconditions
can include assertions over the numeric state variables, and

action effects can include assignments of the numeric state
variables. For instance, the set of numeric state variables
that indicate the physical distance between two blocks is de-
clared in our C++ fragment as map< vector<int>, int>
distance; with this regard, distance[{0,1}] = 7 indicates
that the distance between blocks by and by is of seven units,
and distance[{z1, 22}] > distance[{z2, z3}] indicates that
the distance between the blocks pointed by indexes z1 and
22 is larger than the distance between the blocks pointed by
22 and z3. Object typing is also naturally supported by our
C++ representation specializing map indexes to the number
of objects of a particular type.

4 Generalized Planning with C++

This section details our approach for computing generalized
plans represented as C++ programs.

4.1 Representing generalized plans with C++

Given that a GP problem is just a set of classical planning
problems from a given domain, and that the C++ representa-
tion for classical planning is detailed above, we directly de-
fine here our C++ representation of generalized plans. Our
C++ representation of a generalized plan IT extends our rep-
resentation of a sequential plan 7 with two control-flow con-
structs (I £ conditionals and For loops):

I1 := ExtdStmnit(s)
ExtdStmnit(s) := I f; ExtdStmnit(s) | For; ExtdStmnit(s) |
Statement(s); ExtdStmni(s) [;
f(Condition){ ExtdStmnit(s)}
p(z1,-..,28) ==0) | (p(21,...,2k) #0) |

If =1

=(
(21> 22) | (21 == 22) | (21 < 22) |
(
(

Condition :

p(zla"'7zk) >'p(ziv---azk))|
p(z1,. .., 28) == (21, ..., 21)) |

(p(21, .., 2k) < p(2h- ., 24)) |
For := for(z = 0;z < |Q]; z + +){ ExtdStmnt(s)}|

for(z =19 —1;2 > 0; z — —){ExtdStmni(s)}

where ExtdStmnt (s) extends Statement (s), as defined
for sequential plans, with If conditional and For loop in-
structions. The Condition of an If instruction is restricted
to: (i), checking whether a p(z1, ..., z;) predicate instanti-
ated with indexes in Z equals to zero, (ii), the three three-way
comparison [Browning and Sutherland, 2020] of two differ-
ent indexes in Z and (iii), the three-way comparison of two
predicates instantiated with indexes in Z (or two numeric flu-
ents in the case of a numeric domain). Last, we restrict For
loops to exclusively iterate over the domain [0, |€2]) of an in-
dex z € Z. Like in our C++ representation for sequential
plans, in a C++ generalized plan the set of indexes Z are al-
ways initialized to zero.

Figure 8 shows an example of a generalized plan, rep-
resented as a C++ program and computed by BFGP++, for
unstacking any number of towers from the blocksworld, no
matter the actual number of blocks [€2|. Please note that ob-
ject ordering affects to the sequential plan produced by the
execution of the generalized plan but it does not affect the



void ONTABLE () {
int z1=0, z2=0, 2z3=0;
for (z1=0; z1<|Q]; zl++){
for (z2=0; z2<|Q|; z2++) {
for (z3=0; z3<|Q|; z3++){
act_put_down (z2);
act_unstack (z2,z3);

P}

Figure 8: Generalized plan, represented as a C++ program and com-
puted by BFGP++, for unstacking any number of towers from the
blocksworld, no matter the number of blocks |€2|.

correctness/completeness of the generalized plan®. As a mat-
ter of fact, the program of Figure 8 leverages three indexes
Z = {21, 22, 23} to be robust to any block ordering.

From C++ programs to sequential plans

Given a C++ generalized plan II, and a classical planning
problem P, the sequential plan exec(II, P) is built executing
II on P. This is a deterministic search-free procedure where
no instantiation is required (there are no free variables). The
program execution may however produce actions whose ex-
ecution does not modify the planning state, i.e. the current
state does not meet the precondition of those actions, so ac-
tion effects are not applied. These actions are automatically
discarded since identifying them is straightforward; the ex-
ecution of the corresponding C++ function a(z1, ..., zj) re-
turns false.

We illustrate the building of a sequential plan from a
C++ generalized plan with the execution of the program
of Figure 8 on the initial state of Figure 2. This ex-
ecution produces the following sequence of ground ac-
tions repeated thrice: 3 X (putdown(b0), unstack(b0,b0), put-
down(b0), unstack(b0,b1), putdown(b0), unstack(b0,b2), put-
down(b1l), unstack(b1,b0), putdown(bl), unstack(bl,bl), put-
down(bl), unstack(b1,b2), putdown(b2), unstack(b2,b0), put-
down(b2), unstack(b2,b1), putdown(b2), unstack(b2,b2)). Only
the four actions in bold update the state, i.e. they are ap-
plicable when they are executed; in the first repetition un-
stack(b0,b1l), putdown(b0) and unstack(bl,b2), are applicable;
while putdown(b1), becomes only applicable in the second out
of the three repetitions. The sequence of these four ground ac-
tions actually is the sequential plan for unstacking the three-
block tower of Figure 2.

Termination and complexity of generalized plans
Enabling C++ programs with For loops introduces a new
possible source of failure of a program execution in a given
classical planning instance; the program execution could en-
ter into an infinite loop. To formally guarantee the termina-
tion of our C++ generalized plans, we restrict ourselves to
C++ programs s.t. ExtdStmnt(s) in the body of a For loop do
not include instructions that modify the index iterated by that
loop [Hoare, 1969].

Theorem 2. A generalized plan 11, represented in our C++
fragment is always terminating.

2This also occurs with regular programs e.g. a SelectionSort pro-
gram is sound and complete but the number of swap instructions
executed by the program depends on the input list to be sorted.

Proof. The grammar used for the production of a C++ gener-
alized plan II comprises sequential statements, I f condition-
als, and For loops that iterate over the finite domain [0, |€2])
of an index. Since these rules guarantee the program is well
structured, and given that sequential statements and I f con-
ditionals can only advance the program execution, then For
loops would be the only possible cause of non-termination.
Since we do not allow to programming instructions inside a
For loop that modify the index iterated by the loop, we have
that (nested) For loops always modify indexes in a unique di-
rection, which is terminating because the domain of an index
is finite by definition. O

Besides providing a formal termination proof for C++ gen-
eralized plans, restricting loops to iterations over the domain
[0,]€2]) of an index also reveals the asymptotic complexity of
generalized plans w.r.t. the number of objects. We leverage
the big-O notation to formulate an upper-bound on the com-
plexity of generalized plans and, as a consequence, on the dif-
ficulty of the problems solved by those plans [Skiena, 1998].
If there is a C++ generalized plan II that solves a given clas-
sical planning problem P, it means that the length of the se-
quential plan produced by the execution of I on P is upper-
bounded by a polynomial of the number of objects |Q2]; the
degree of that polynomial is given by the maximum number
of nested for loops in the C++ program. As || grows larger
this term will come to dominate, so that all other terms, and
the coefficients, can be ignored.

Definition 3 (Asymptotic complexity of a generalized plan).
The asymptotic complexity of a generalized plan represented
by a C++ program is defined as the joint product of the
ranges of the indexes iterated by the largest set of nested
loops.

For instance the generalized plan of Figure 8, with three
nested loops, and where each loop range is [0, |€2]), has
asymptotic complexity O(|Q2|). This is a worst-case upper-
bound; the program of Figure 8 exhibits worst-case complex-
ity O(]©2|®) but we showed that the produced sequential plan
for the three-block instance of Figure 2 contained four ac-
tions.

4.2 Synthesis of C++ programs as heuristic search

BFGP++ is our approach to the synthesis of generalized plans,
represented as C++ programs. BFGP++ implements a Best-
First Search (BFS) in the space of possible programs that can
be built with the grammar of Section 4.1. Since this search
space is unbound, we bound it with two input parameters: a
maximum number program lines n, and a maximum number
of indexes |Z| that can be used by a program. Next, we pro-
vide more details on the implementation of BFGP++.

The search space

Each node of the BFGP++ search space corresponds to a par-
tially specified program. By partially specified program we
mean that some of its n program lines may be undefined,
because they are not programmed yet. Starting from the
empty program (i.e. the partially specified program whose
n lines are all undefined), we enumerate the space of possi-
ble programs with a search operator that programs a possible



programming instruction (according to the grammar of Sec-
tion 4.1), at an undefined program line 0 < ¢ < n. This
search operator is only applicable when program line i is
undefined. Initially ¢ := 0, and after line ¢ is programmed
1 := 1 + 1. For instance, we can build the generalized plan
of Figure 8 with the index set Z = {z1, 29, 23}, starting from
the empty program, and following the successive application
of the following six grammar rules (indexes in Z are always
initialized to zero):

1. for(zl = 0521 < |Q]; 214++){ExtdStmnt(s)}
2. for(z2 =0;22 < |Q[; 22++){ ExtdStmnt(s)}
3. for(z3 =0;23 < |Q[; 23++){ExtdStmnt(s)}
4. act_putdown(z2); ExtdStmnt(s)
5. act.unstack(z2, 23); ExtdStmnt(s)
6

L)

Pruning rules

To keep the search space tractable, BFGP++ implements the
following pruning rules that reduce the search space but pre-
serve the solution space:

* We do not allow programming a conditional if or a for
loop at the last program line; it is meaningless to pro-
gram control-flow structures with empty body.

* We do not allow programming for loops that iterate over
an object type that contains, at most, a single object for
all the instances of the GP problem.

In addition, we implement a simple but effective symme-
try breaking mechanism to safely prune the programming of
for loops that correspond to symmetries (permutations of the
order of the for loops) of already expanded programs. We
use a tabu list, that is initially empty and, every time a node
is expanded, we store an abstraction of its programmed for
loops; the remaining program instructions, and the precise
identity of the indexes iterated by the for loops are ignored.
For instance, the generalized plan of Figure 8 is abstracted by
{(block,++,1,8), (block,++,2,7), (block,++,3,6)}, since this
program contains three for loops and where, b1 ock indicates
the index type, ++ indicates the kind of the for loop (++in-
creasing/--decreasing), and each pair of numbers indicates
the first and last program lines of each for loop.

The evaluation functions

BFGP++ implements a Best-First Search (BFS) in the pre-
vious solution space. To reduce memory requirements, we
store only the open list of generated nodes but not the closed
list of expanded nodes [Korf er al., 2005]. We consider the
following evaluation functions for sorting the open list:

® feuclidean (Ha 7)) = ZPte”P Zvth (St[v] - Gt [UDQ'
This function accumulates, for each classical planning
problem P, € P in a GP problem, the euclidean distance
of state s; to the goal state variables G;. The state s; is
obtained applying the sequence of actions exec(1l, P;)
to the initial state I; of that problem P, € P.

* fmin(#loops) (IT) is the number of loop instructions in IT.

Both feuclideom and fmin(#loops) were pI‘OpOS&d in
Segovia-Aguas et al. (2021), named hy and f; respectively.

In more detail, the configuration with the best reported per-
formance was ( feuctideans fmin(#i0ops))» i-€. sorting the open

list with feyctidean, and breaking ties with the fo,in(#100ps)
function. In this paper we introduce a third alternative func-
tion fmaw(#loops)(ﬂ) = *f'rnin(#loops) (H), which aims
maximizing the number of loops in a program. We discov-
ered that prioritizing by feyclidean and breaking ties with our
new function f,qz(#100ps)» inStead of fy,in (#i00ps)» performs
much better at a wide range of challenging GP problems. Sec-
tion 5 provides details on the obtained results.

Properties of BFGP++

Our BFGP++ algorithm for the synthesis of C++ generalized
plans is terminating; termination follows from a terminating
searching algorithm and evaluation functions. Regarding the
former, BFGP++ implements a frontier BFS which is known
to be terminating at finite search spaces [Korf et al., 2005],
we recall that the search space of BFGP++ is finite since n
and |Z| are bounded. Regarding the evaluation functions,
Jmin(#10ops) a4 finaz(#i0ops)» they terminate in n steps,
where n is the number of lines of the program to evaluate,
and feyuciidean terminates iff the program executions termi-
nate, which immediately follows from Theorem 2. Further,
BFGP++ is sound, since it only outputs a program when it is
able to solve all the planning instances given as input in the
GP problem (Definition 2). Last, BFGP++ is complete pro-
vided that there exists a GP solution within the given number
of program lines n and indexes |Z]|.

5 Evaluation

Next we report results on the synthesis (and validation) of
C++ generalized plans with BFGP++, and compared them
w.r.t. the GP as heuristic search approach [Segovia-Aguas
et al., 2021; Segovia-Aguas et al., 2022al, the state-of-the-art
for the computation of generalized plans represented as pro-
grams. All experiments are performed in an Ubuntu 20.04
LTS, with AMD® Ryzen 7 3700x 8-core processor x 16 and
32GB of RAM, with a 1 hour time bound. We also report the
computed solutions, and their asymptotic complexity w.r.t the
number of world objects.

We address the full set of domains from Segovia-Aguas et
al. (2021), all numeric domains, and we also address several
STRIPS domains (marked with a *). Next we briefly describe
the domains: Blocks* (ontable), put all blocks onto the table
from any number of towers and blocks setting. Corridor*,
move from any initial location in a corridor to any other ar-
bitrary location. Fibonacci, given the first numbers of the
Fibonacci sequence, compute the nt" value. Find, count the
number of occurrences of a specific value in a vector. Floyd*,
given an input graph, compute a path that connects two distant
nodes. Gripper*, move all balls from room A to the adjacent
room B. Intrusion®, steal data from a set of hosts. Reverse,
reverse the content of a given vector. Select, search for the
minimum value in a vector. Sorting, sort in increasing order
all the values in a vector. Spanner¥*, collect the spanners in a
directed corridor to tighten all loose nuts. Triangular Sum,
given the first numbers of the triangular sum, compute the n!"
value. Visitall*, starting at the bottom left corner of a squared
grid visit all locations in the grid.
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n |Z] Time Mem. Exp. Eval. Time Mem. Exp. Eval.
Blocks (ontable) 9,3 TE TE TE TE 0.08 5 9 347
Corridor 11,2 TE TE TE TE 701.90 27 661.4K 2.5M
Fibonacci 7,2 32.05 83 242.1K 1.7M 1.61 5 24K 19.1K
Find 6,3 0.98 7 13.9K 38.4K 0.14 5 1.3K 39K
Floyd 8,3 TE TE TE TE 0.22 5 4 138
Gripper 8,4 TE TE TE TE 105.00 206 83.2K 1.0M
Intrusion 9,1 TE TE TE TE 521.24 874 411.8K 3.4M
Reverse 7,2 9.75 31 99.8K 344.7K 0.23 4 626 2.8K
Select 7,2 9.52 32 96.3K 331.6K 0.28 4 737 44K
Sorting 8,2 129.72 335 1.2M 4.1M 0.02 4 52 245
Spanner 12,5 TE TE TE TE 0.91 5 14 367
Triangular Sum 5,2 0.15 5 1.4K 9.9K 0.01 4 9 96
Visitall 15,4 TE TE TE TE 1.67 6 117 2.7K

Table 1: Number n of program lines and | Z| indexes. For each synthesis configuration we report CPU time (secs), memory peak (MBs), and
number of expanded and evaluated nodes. Best results in bold. TE stands for Time-Exceeded (>1h of CPU).

Synthesis of C++ generalized plans

For the synthesis experiments, we use ten random in-
stances of increasing difficulty per domain and com-
pare BFGP++, that leverages the function combination
(feuctidean fmaz(#100ps))» With the best configuration of the
GP as heuristic search approach [Segovia-Aguas et al., 2021;
Segovia-Aguas et al., 2022a], that leverages the evaluation
functions ( feuctidean, fmin(#100ps)) and serves as a baseline.

Table 1 summarizes the obtained results, when computing
the best solutions found in terms of number of required pro-
gram lines and pointers, and it shows that BFGP++ outper-
forms the baseline over all the domains. One of the main
performance issues in the synthesis of planning programs is
to guarantee that a given (partially specified) program is ter-
minating [Segovia-Aguas e al., 2020]; in Segovia-Aguas et
al. (2021), search nodes corresponding to infinite programs
were checked and discarded in execution time, which was
costly and had no guarantees beyond the given set of input
instances. Alternatively, the candidate C++ generalized plans
considered by BFGP++ are, by definition, terminating for any
input instance. Therefore BFGP++ skips the costly check of
infinite programs.

Note that the baseline fails to solve the STRIPS domains
within the given computation bounds. In STRIPS domains,
feuctidean 18 @ simple goal counting heuristic. The function
combination of BFGP++ feuciidean, fmax(#loops) breaks ties
prioritizing C++ programs of higher asymptotic complexity.
This means that, if a C++ generalized plan does not exist
within n — 1 lines, but it does exist for n lines, it will probably
contain as many nested loops as possible. This is not however
a rule of thumb, as shown by the Corridor domain, which is
the domain that took the largest time to be solved; requiring
two consecutive (not nested) For loops, which are hard to
identify by our current evaluation functions.

Validation of C++ generalized plans

The generalized plans synthesized by BFGP++ are compilable
with the GCC g++ compiler, and they are all successfully
validated on twenty large random instances of increasing size.
Table 2 reports the size of the largest instance, and the average
and total validation times (including compilation time). This
experiment shows that representing generalized plans as C++
programs is a scalable approach to deal with large classical

planning instances, of thousands of objects, where off-the-
shelf classical planners get stuck even in the pre-processing.

Next we report the computed programs and their asymp-
totic complexity. Please note that the reported validation
times correlate to the revealed program complexity.

Floyd. Indexes increase up to N = ||, which denotes the
number of graph nodes, of the input instances. The asymp-
totic complexity of the generalized plan is O(N?3).
void FLOYD () {

int z1=0, z2=0, 2z3=0;
for (z1=0; z1<N; zl++){
for (z2=0; z2<N; z2++) {
for (z3=0; z3<N; z3++) {

act_connect (z1,2z2,23);

13N

Corridor. This generalized plan requires the composition
of two for loops, the first one to move to the rightmost loca-
tion, and a second one to move back until reaching the goal
location. In the worst case it iterates twice over the set of
locations NV, and its asymptotic complexity is O(N).
void CORRIDOR () {

int 11 = 0, 12 = O;
for (11=0; 11<N; 11++){
act_move (12,11);
12 = 11;
}
for (11=N-1; 11>=0; 11--){
if (pred_goal_at[{11}] == 0 ){
if (12>0) 12--;
}
act_move (11,12);

1)

Fibonacci and Triangular Sum. Both are numeric do-
mains, where an input vector is given with the first elements
of the sequence to compute. They compute every a-th value
iteratively until reaching the last NV value. Their asymptotic
complexity is O(N).

void FIBONACCI () { void TRIANGULARSUM () {
int a=0, b=0; int a=0, b=0;

for (a=0; a<N; a++) { for (a=0; a<N; a++){
act_vector_add(a,b); act_vector_add(a,b);
if (b>0) b--; b = a;
act_vector_add(a,b); 1}
b = a;}}

Find, Reverse, Select and Sorting. Four numeric domains
for vector manipulation. NV is the size of the input vector, the
first three domains run in O(N). Sorting has two nested loops

so its complexity is O(N?).



void FIND () {
int i=0, t=0, a=0;
for (i=0; 1i<N; i++){

void SELECT () {

int a=0, b=0;

for (a=0; a<N; a++) {
if(p_vif{all<p_vi{b}]){

if (p_v[{i}]==p_v[{t}]){
act_accumulate (a); b=a; }}
11} act_select (b);}

void REVERSE () {
int i=0, 3j=0;

void SORTING () {
int i=0, 3j=0;
for (i=N-1; i>=0; i--){ for (i=0; 1i<N; i++){
if (1>3){ for (j=0; J<N; J++){
swap (p_v([{i}],p_vI[{3}]); i€(p_vI{i}]I<p_vI[{J}]){
} swap (p_v [{i}],p_v[{3}]1);i}}}}
if (J<N-1) J++; }}

Gripper and Intrusion. These two domains have gener-
alized plans where a sequence of planning actions is repeated
over the finite set of objects: the number of balls N B for
Gripper, and the number of hosts N H for Intrusion. Their
complexity is O(N B) and O(N H ), respectively.

void GRIPPER() { void INTRUSION () {
int r1=0, r2=0, bl=0, gl=0; int hl=0;
for (b1=0; Db1<NB; bl++) { for (h1=0; hl1<NH; hl++) {
act_pick(bl,rl,qgl); act_recon(hl);
if (r2<NROOMS-1) r2++; act_break_into(hl);
act_move (rl,r2); act_clean (hl);
act_drop (bl,r2,gl) act_gain_root (hl);

act_move(r2,rl); }} act_download_files (hl);
act_steal_data (hl); 1}
Spanner. The complexity of this generalized plan is

O(NLOC? - NNUTS - NSPAN), where NLOC is the
number of locations, NNUT'S is the number of nuts, and
NSPAN is the number of spanners.

void SPANNER () {
int 11=0, 12=0, ml=0, nl=0, s1=0;
for (11=0; 11<NLOC; 11++){
for (12=0; 12<NLOC; 12++){
for (n1=0; nl<NNUTS; nl++) {
for (s1=0; s1<NSPAN; sl++) {
act_pickup_spanner (11,sl,ml);
act_tighten_nut (11,s1l,ml,nl);
act_walk (11,12,ml); }}}}

Visitall. The complexity of this generalized plan is
O(NROW S? - NCOLS?), where NROW S is the number
of grid rows and NCOLS the number of grid columns.
void VISITALL () {

int r1=0, r2=0, yl1=0, y2=0;
for (r1=0; rl1<NROWS; rl++) {
for (r2=0; r2<NROWS; r2++) {
for (c1=0; cl<NCOLS; cl++){
for (c2=NCOLS-1; c2>=0; c2--){
act_right(cl,c2);
act_visit(rl,c2);
if(p_at_row[{r2}]1==0) {
act_up(rl,r2);
act_left(c2,cl); }}}1}r}

6 Conclusions

We presented a novel C++ representation for GP problems,
and their solutions. We also introduced BFGP++ that im-
plements a heuristic search in the space of candidate C++
generalized plans, which naturally models STRIPS domains,
and that outperforms the previous GP as heuristic search ap-
proach [Segovia-Aguas et al., 2021; Segovia-Aguas et al.,
2022al; since our C++ programs are terminating by defi-
nition, BFGP++ can skip the costly check of infinite pro-
grams. In addition we showed that our C++ generalized plans

Max. input Avg. instance time (s) Total time (s)
Blocks (ont.) 1,000 blocks 33.592437.888 673.427
Corridor 5,001 locs. 0.0104 0.005 1.495
Fibonacci 44th num. 0.00140.000 1.285
Find 5,001 elems. 0.0044-0.002 1.352
Floyd 872 vertices 30.502438.561 611.308
Gripper 5,001 balls 0.011=% 0.005 1.702
Intrusion 1,001 hosts 0.00340.001 1.568
Reverse 5,001 elems. 0.00740.003 1.416
Select 5,001 elems. 0.01040.004 1.485
Sorting 5,001 elems. 1.33741.200 28.029
Spanner 212 spanners 20.6094-26.363 413.798
T. Sum 5,001st num. 0.00840.004 1.458
Visitall 100 x 100 grid 6.738+7.474 136.325

Table 2: Size of the largest instance, avg. instance time with stan-
dard deviation and total validation time including compilation time
(both in seconds).

are compilable with standard programming tools (GCC g++)
and that they are successfully validated in large instances,
with several thousands of objects, where off-the-shelf clas-
sical planners get stuck in the pre-processing. Our cost-fo-
go heuristic is less informed than current heuristics for clas-
sical planning; our research agenda is to obtain better esti-
mates building on top of modern heuristics for classical plan-
ning [Segovia-Aguas et al., 2022b]

Our C++ representation for GP can be viewed as an in-
stantiation of F-STRIPS [Geffner, 2000]; we show that the
single level of indirection of indexes over objects is enough
to represent GP problems, and their solutions, with constant
memory access; in F-STRIPS function symbols can be re-
cursively nested, so the actual complexity of state queries in
F-STRIPS depends on the depth of this nesting. Prior work
characterized the complexity of planning tasks following a re-
lated but different approach; analysing the behaviour of state-
space heuristics for classical planning [Hoffmann, 2005;
Helmert, 2008; Seipp et al., 2016]. When generalized plans
are represented as generalized policies their complexity has
also been characterized w.r.t. the features in the policy
rules [Bonet and Geffner, 2021].
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